column

Arb: a C library for ball arithmetic

Published:28 January 2014Publication History
First page image

References

  1. A. Enge. MPFRCX: a library for univariate polynomials over arbitrary precision real or complex numbers, 2012. http://www.multiprecision.org/index.php?prog=mpfrcx.Google ScholarGoogle Scholar
  2. L. Fousse, G. Hanrot, V. Lef`evre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Transactions on Mathematical Software, 33(2):13:1--13:15, June 2007. http://mpfr.org. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. W. B. Hart. Fast Library for Number Theory: An Introduction. In Proceedings of the Third international congress conference on Mathematical software, ICMS'10, pages 88--91, Berlin, Heidelberg, 2010. Springer-Verlag. http://flintlib.org. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. W. B. Hart and A. Novocin. Practical divide-and-conquer algorithms for polynomial arithmetic. In Computer Algebra in Scientific Computing, pages 200--214. Springer, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. F. Johansson et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic, version 0.17, 2011. http://mpmath.org.Google ScholarGoogle Scholar
  6. Xian-Jin Li. The positivity of a sequence of numbers and the Riemann Hypothesis. Journal of Number Theory, 65(2):325--333, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  7. N. Müller. The iRRAM: Exact arithmetic in C++. In Computability and Complexity in Analysis, pages 222--252. Springer, 2001. http://irram.uni-trier.de. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. N. Revol and F. Rouillier. Motivations for an arbitrary precision interval arithmetic library and the MPFI library. Reliable Computing, 11(4):275--290, 2005. http://perso.ens-lyon.fr/nathalie.revol/software.html.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. Sofroniou and G. Spaletta. Precise numerical computation. Journal of Logic and Algebraic Programming, 64(1):113--134, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  10. The PARI Group, Bordeaux. PARI/GP, version 2.5.3, 2012. http://pari.math.u-bordeaux.fr.Google ScholarGoogle Scholar
  11. J. van der Hoeven. Making fast multiplication of polynomials numerically stable. Technical Report 2008-02, Université Paris-Sud, Orsay, France, 2008.Google ScholarGoogle Scholar
  12. J. van der Hoeven. Ball arithmetic. Technical report, HAL, 2009. http://hal.archives-ouvertes.fr/hal-00432152/fr/.Google ScholarGoogle Scholar
  13. J. van der Hoeven, G. Lecerf, B. Mourrain, P. Trébuchet, J. Berthomieu, D. N. Diatta, and A. Mantzaflaris. Mathemagix: the quest of modularity and efficiency for symbolic and certified numeric computation? ACM Communications in Computer Algebra, 45(3/4):186--188, January 2012. http://mathemagix.org. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Arb: a C library for ball arithmetic

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Communications in Computer Algebra
          ACM Communications in Computer Algebra  Volume 47, Issue 3/4
          September/December 2013
          116 pages
          ISSN:1932-2240
          DOI:10.1145/2576802
          Issue’s Table of Contents

          Copyright © 2014 Author

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 28 January 2014

          Check for updates

          Qualifiers

          • column

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader
        About Cookies On This Site

        We use cookies to ensure that we give you the best experience on our website.

        Learn more

        Got it!