ABSTRACT
Persistent homology is a widely used tool in Topological Data Analysis that encodes multiscale topological information as a multi-set of points in the plane called a persistence diagram. It is difficult to apply statistical theory directly to a random sample of diagrams. Instead, we can summarize the persistent homology with the persistence landscape, introduced by Bubenik, which converts a diagram into a well-behaved real-valued function. We investigate the statistical properties of landscapes, such as weak convergence of the average landscapes and convergence of the bootstrap. In addition, we introduce an alternate functional summary of persistent homology, which we call the silhouette, and derive an analogous statistical theory.
References
- S. Balakrishnan, B. Fasy, F. Lecci, A. Rinaldo, A. Singh, and L. Wasserman. Statistical inference for persistent homology, 2013. arXiv 1303.7117.Google Scholar
- P. Bubenik. Statistical topology using persistence landscapes, 2012. arXiv 1207.6437.Google Scholar
- F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The structure and stability of persistence modules, July 2012. arXiv 1207.3674.Google Scholar
- F. Chazal, V. de Silva, and S. Oudot. Persistence stability for geometric complexes. Geom. Dedicata, Dec. 2013.Google Scholar
- F. Chazal, B. T. Fasy, F. Lecci, A. Rinaldo, A. Singh, and L. Wasserman. On the bootstrap for persistence diagrams and landscapes, 2013. arXiv 1311.0376.Google Scholar
- F. Chazal, C. Labruère, M. Glisse, and B. Michel. Optimal rates of convergence for persistence diagrams in topological data analysis. arXiv 1305.6239, 2013.Google Scholar
- V. Chernozhukov, D. Chetverikov, and K. Kato. Gaussian approximation of suprema of empirical processes, 2012. arXiv 1212.6885.Google Scholar
- V. Chernozhukov, D. Chetverikov, and K. Kato. Anti-concentration and honest adaptive confidence bands, 2013. arXiv 1303.7152.Google Scholar
- D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete Comput. Geom., 37(1):103--120, 2007. Google Scholar
Digital Library
- P. Diaconis, S. Holmes, and M. Shahshahani. Sampling from a manifold, 2012. arXiv 1206.6913.Google Scholar
- H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Disc. Comput. Geom., 28(4):511--533, July 2002.Google Scholar
Digital Library
- B. Efron. Bootstrap methods: another look at the jackknife. The Annals of Statistics, pages 1--26, 1979.Google Scholar
Cross Ref
- B. Efron and R. Tibshirani. An introduction to the bootstrap, volume 57. CRC press, 1993.Google Scholar
- E. Munch, P. Bendich, K. Turner, S. Mukherjee, J. Mattingly, and J. Harer. Probabilistic Fréchet means and statistics on vineyards, 2013. arXiv 1307.6530.Google Scholar
- M. Talagrand. Sharper bounds for Gaussian and empirical processes. The Annals of Probability, 22(1):28--76, 1994.Google Scholar
Cross Ref
- K. Turner, Y. Mileyko, S. Mukherjee, and J. Harer. Fréchet means for distributions of persistence diagrams, 2012. arXiv 1206.2790.Google Scholar
- A. van der Vaart. Asymptotic Statistics, volume 3. Cambridge UP, 2000.Google Scholar
- A. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Verlag, 1996.Google Scholar
- A. Zomorodian and G. Carlsson. Computing persistent homology. Disc. Comp. Geom., 33(2):249--274, 2005. Google Scholar
Digital Library
Index Terms
Stochastic Convergence of Persistence Landscapes and Silhouettes




Comments