10.1145/258726.258771acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article
Free Access

On symmetric powers of differential operators

Authors Info & Claims
Published:01 July 1997Publication History
First page image

References

  1. 1.BRONSTEJN, M. On radical solutions of linear ordinary differential equations. In Proceedings of the Nijmegen Cathode Workshop (1995), T. Levelt, Ed., pp. 23-24,Google ScholarGoogle Scholar
  2. 2.BRONSTEIN, M. ~IT a strongly-typed embeddable computer algebra library. In Proceedings of DISCO'96 (1996), LNCS 1128, Springer, pp. 22-33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. 3.BRONSTEIN, M., AND PETKOVSEK, M. An introduction to pseudo--linear algebra. Theoretical Computer Science 157 (1996), 3-33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. 4.CtlAR, B., GEDDES, K., GONNET, G., BENTON, L., MONAGAN, M., AND WATT, S. Maple V Library Reference Manual. Springer, New York, 1991.Google ScholarGoogle Scholar
  5. 5.G~:DDES, K., CZAPOa, S., AND LABAUN, G. Algorithms for Computer Algebra. Kluwer Academic Publishers, Boston, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. 6.Hi'NON, 3/{. A mechanical model for the hitchcock problem. Comptes Rendus de l'Acaddmie des Sciences, Paris, Sdrie I, Mathdmatiques 321 (1995), 741-745.Google ScholarGoogle Scholar
  7. 7.JENKS, R., AND SUTOrt, R. Aziom - The Scientific Computation System. Springer, New York, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. 8.McCLELLAN, M. The exact solution of systems of linear equations with polynomial coefficients. Journal of the ACM 20 (1973), 563-588. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. 9.ScnmJVEa, A. Theory of Linear and Integer Programrain9. Wiley, 1986.Google ScholarGoogle Scholar
  10. 10.SCHWARTZ, J. Fast probabilistic algorithms for verification of polynomial identities. Journal of the A CM 27 (1980), 701-717. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. 11.SINGER, M. Liouvillian solutions of nth order homogeneous linear differential equations. American Journal of Mathematics 103 (1980), 661-682.Google ScholarGoogle ScholarCross RefCross Ref
  12. 12.SINGER, M. Testing reducibility of linear differential operators: a group theoretic perspective. Applicable Algebra in Engineering, Communication and Computing 7 (1996), 77-104.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. 13.SINGErt, M., AND ULMER, F. Galois groups for second and third order linear differential equations. Journal of Symbolic Computation 16 (1993), 1-36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. 14.SINGER, M., AND ULMER, F. Liouvillian and algebraic solutions of second and third order linear differential equations. Journal of Symbolic Computation 16 (1993), 37-73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. 15.SINGER, M., AND ULMER, F. Linear differential equations and products of linear forms. In Proceedings of MEGA 'g6 (to appear).Google ScholarGoogle Scholar
  16. 16.ULMER, F., AND WELL, J.-A. Note on kovacic's algorithm. Journal of Symbolic Computation 22 (1996), 179-200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. 17.VAN HOEIJ, M. Factorization of Linear Differential Operators. Computer science dissertation, Nijmegen, 1996. The package diff vp is available from http: //www-math. sci. kun.nl/math/compalg/diffop/.Google ScholarGoogle Scholar
  18. 18.VAN HOEIJ, M., AND WEIL, J.-A. An algorithm for computing invariants of differential galois groups. In Proceedings of MEGA '96 (to appear).Google ScholarGoogle Scholar

Index Terms

  1. On symmetric powers of differential operators

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          ISSAC '97: Proceedings of the 1997 international symposium on Symbolic and algebraic computation
          July 1997
          414 pages
          ISBN:0897918754
          DOI:10.1145/258726

          Copyright © 1997 ACM

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 1997

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          Overall Acceptance Rate350of728submissions,48%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader
        About Cookies On This Site

        We use cookies to ensure that we give you the best experience on our website.

        Learn more

        Got it!