skip to main content
research-article

Self-refining games using player analytics

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

Data-driven simulation demands good training data drawn from a vast space of possible simulations. While fully sampling these large spaces is infeasible, we observe that in practical applications, such as gameplay, users explore only a vanishingly small subset of the dynamical state space. In this paper we present a sampling approach that takes advantage of this observation by concentrating precomputation around the states that users are most likely to encounter. We demonstrate our technique in a prototype self-refining game whose dynamics improve with play, ultimately providing realistically rendered, rich fluid dynamics in real time on a mobile device. Our results show that our analytics-driven training approach yields lower model error and fewer visual artifacts than a heuristic training strategy.

Skip Supplemental Material Section

Supplemental Material

a73-sidebyside.mp4

References

  1. Barbič, J., and James, D. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3 (July), 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barbič, J., and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. ACM Trans. Graph. 27, 5 (Dec.), 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chentanez, N., and Müller, M. 2010. Real-time simulation of large bodies of water with small scale details. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '10, 197--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chentanez, N., and Müller, M. 2011. Real-time Eulerian water simulation using a restricted tall cell grid. ACM Trans. Graph. 30, 4 (July), 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cinematronics, 1983. Dragon's Lair. {Arcade}.Google ScholarGoogle Scholar
  6. Claypool, M., and Claypool, K. 2010. Latency can kill: Precision and deadline in online games. In Proceedings of the First ACM Multimedia Systems Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cooper, S., Hertzmann, A., and Popović, Z. 2007. Active learning for real-time motion controllers. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver-Fay, A., Baker, D., and Popović, Z. 2010. Predicting protein structures with a multiplayer online game. Nature 466 (August).Google ScholarGoogle Scholar
  9. Crane, K., Llamas, I., and Tariq, S. 2007. Real Time Simulation and Rendering of 3D Fluids. Addison-Wesley, ch. 30.Google ScholarGoogle Scholar
  10. Eitz, M., Hays, J., and Alexa, M. 2012. How do humans sketch objects? ACM Trans. Graph. 31, 4 (July), 44:1--44:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. El-Nasr, M. S. 2007. Interaction, narrative, and drama: Creating an adaptive interactive narrative using performance arts theories. Interaction Studies 8, 2 (June), 209--240.Google ScholarGoogle ScholarCross RefCross Ref
  12. Feller, W. 1968. An Introduction to Probability Theory and Its Applications. Wiley.Google ScholarGoogle Scholar
  13. Guan, P., Reiss, L. and Hirshberg, D., Weiss, A., and Black, M. J. 2012. DRAPE: DRessing Any PErson. ACM Trans. Graph. 31, 4 (July), 35:1--35:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gupta, M., and Narasimhan, S. G. 2007. Legendre fluids: A unified framework for analytic reduced space modeling and rendering of participating media. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '07, 17--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Houlette, R. 2003. Player modeling for adaptive games. In AI Game Programming Wisdom 2, S. Rabin, Ed. Charles River Media.Google ScholarGoogle Scholar
  16. Jakob, W., 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  17. James, D. L., and Fatahalian, K. 2003. Precomputing interactive dynamic deformable scenes. Tech. Rep. CMU-RI-TR-03-33, Carnegie Mellon University Robotics Institute.Google ScholarGoogle Scholar
  18. Kavan, L., Gerszewski, D., Bargteil, A. W., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4 (July), 93:1--93:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kim, T., and Delaney, J. 2013. Subspace fluid re-simulation. ACM Trans. Graph. 32, 4 (July), 62:1--62:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kim, T., and James, D. L. 2009. Skipping steps in deformable simulation with online model reduction. ACM Trans. Graph. 28, 5 (Dec.), 123:1--123:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kim, D., Koh, W., Narain, R., Fatahalian, K., Treuille, A., and O'Brien, J. F. 2013. Near-exhaustive precomputation of secondary cloth effects. ACM Trans. Graph. 32, 4 (July), 87:1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kittur, A., Chi, E. H., and Suh, B. 2008. Crowdsourcing user studies with Mechanical Turk. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '08, 453--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lee, J., Kladwang, W., Lee, M., Cantu, D., Azizyan, M., Kim, H., Limpaecher, A., Yoon, S., Treuille, A., Das, R., and EteRNA Participants. 2014. RNA design rules from a massive open laboratory. Proceedings of the National Academy of Sciences. 2014. (Preprint).Google ScholarGoogle ScholarCross RefCross Ref
  24. Limpaecher, A., Feltman, N., Treuille, A., and Cohen, M. 2013. Real-time drawing assistance through crowdsourcing. ACM Trans. Graph. 32, 4 (July), 54:1--54:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Macklin, M., and Müller, M. 2013. Position based fluids. ACM Trans. Graph. 32, 4 (July), 104:1--104:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. McCann, J., and Pollard, N. 2007. Responsive characters from motion fragments. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Microsoft, 2013. Drivatar website. http://research.microsoft.com/en-us/projects/drivatar.Google ScholarGoogle Scholar
  28. Page, L., Brin, S., Motwani, R., and Winograd, T. 1999. The PageRank citation ranking: bringing order to the Web. Technical Report 1999-66, Stanford InfoLab, November.Google ScholarGoogle Scholar
  29. Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I. 2000. Video textures. In Proceedings of SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, 489--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Smith, A. M., Lewis, C., Hullett, K., Smith, G., and Sullivan, A. 2011. An inclusive taxonomy of player modeling. Tech. Rep. UCSC-SOE-11-13, University of California, Santa Cruz.Google ScholarGoogle Scholar
  31. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible SPH. ACM Trans. Graph. 28, 3 (July), 40:1--40:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Stanton, M., Sheng, Y., Wicke, M., Perazzi, F., Yuen, A., Narasimhan, S., and Treuille, A. 2013. Non-polynomial Galerkin projection on deforming meshes. ACM Trans. Graph. 32, 4 (July), 86:1--86:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Št'ava, O., Beneš, B., Brisbin, M., and Křivánek, J. 2008. Interactive terrain modeling using hydraulic erosion. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '08, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Thue, D., Bulitko, V., Spetch, M., and Wasylishen, E. 2007. Interactive storytelling: A player modelling approach. In The Third Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE '07.Google ScholarGoogle Scholar
  35. Thurey, N., Müller-Fischer, M., Schirm, S., and Gross, M. 2007. Real-time breaking waves for shallow water simulations. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, PG '07, 39--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Trans. Graph. 25, 3 (July), 826--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. von Ahn, L., and Dabbish, L. 2004. Labeling images with a computer game. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '04, 319--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. von Ahn, L., Liu, R., and Blum, M. 2006. Peekaboom: a game for locating objects in images. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '06, 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. von Ahn, L., Maurer, B., Mcmillen, C., Abraham, D., and Blum, M. 2008. reCAPTCHA: Human-based character recognition via web security measures. Science 321, 5895 (August), 1465--1468.Google ScholarGoogle ScholarCross RefCross Ref
  40. Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. ACM Trans. Graph. 28, 3 (July), 39:1--39:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3 (July), 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Zook, A., Lee-Urban, S., Drinkwater, M. R., and Riedl, M. O. 2012. Skill-based mission generation: A data-driven temporal player modeling approach. In Proceedings of the 7th International Conference on the Foundations of Digital Games, FDG '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Zook, A., Fruchter, E., and Riedl, M. O. 2014. Automatic playtesting for game parameter tuning via active learning. In Proceedings of the 9th International Conference on the Foundations of Digital Games, FDG '14.Google ScholarGoogle Scholar

Index Terms

  1. Self-refining games using player analytics

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 33, Issue 4
          July 2014
          1366 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2601097
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2014
          Published in tog Volume 33, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader