10.1145/2608628.2608629acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Evaluating parametric holonomic sequences using rectangular splitting

Published:23 July 2014Publication History

ABSTRACT

We adapt the rectangular splitting technique of Paterson and Stockmeyer to the problem of evaluating terms in holonomic sequences that depend on a parameter. This approach allows computing the n-th term in a recurrent sequence of suitable type using O(n1/2) "expensive" operations at the cost of an increased number of "cheap" operations.

Rectangular splitting has little overhead and can perform better than either naive evaluation or asymptotically faster algorithms for ranges of n encountered in applications. As an example, fast numerical evaluation of the gamma function is investigated. Our work generalizes two previous algorithms of Smith.

References

  1. A. V. Aho, K. Steiglitz, and J. D. Ullman. Evaluating polynomials at fixed sets of points. SIAM Journal on Computing, 4(4):533--539, 1975.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. J. Bernstein. Fast multiplication and its applications. Algorithmic Number Theory, 44:325--384, 2008.Google ScholarGoogle Scholar
  3. P. B. Borwein. Reduced complexity evaluation of hypergeometric functions. Journal of Approximation Theory, 50(3), July 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM Journal on Computing, 36(6):1777--1806, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. P. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge University Press, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Informatica, 28(7):693--701, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. V. Chudnovsky and G. V. Chudnovsky. Approximations and complex multiplication according to Ramanujan. In Ramanujan Revisited, pages 375--472. Academic Press, 1988.Google ScholarGoogle Scholar
  8. W. B. Hart. Fast Library for Number Theory: An Introduction. In Proceedings of the Third international congress conference on Mathematical software, ICMS'10, pages 88--91, Berlin, Heidelberg, 2010. Springer-Verlag. http://flintlib.org. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. F. Johansson. Arb: a C library for ball arithmetic (ISSAC 2013 software presentation). ACM Communications in Computer Algebra, 47(4):166--169, 2013. http://fredrikj.net/arb/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Köhler and M. Ziegler. On the stability of fast polynomial arithmetic. In Proceedings of the 8th Conference on Real Numbers and Computers, Santiago de Compostela, Spain, 2008.Google ScholarGoogle Scholar
  11. M. Mezzarobba. NumGfun: a package for numerical and analytic computation with D-finite functions. In Proceedings of ISSAC'10, pages 139--146, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM Journal on Computing, 2(1), March 1973.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. M. Smith. Efficient multiple-precision evaluation of elementary functions. Mathematics of Computation, 52:131--134, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  14. D. M. Smith. Algorithm: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions. Transactions on Mathematical Software, 27:377--387, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. van der Hoeven. Fast evaluation of holonomic functions. TCS, 210:199--215, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. van der Hoeven. Making fast multiplication of polynomials numerically stable. Technical Report 2008-02, Université Paris-Sud, Orsay, France, 2008.Google ScholarGoogle Scholar
  17. J. von zur Gathen and J. Gerhard. Fast algorithms for Taylor shifts and certain difference equations. In Proceedings of ISSAC'97, pages 40--47, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 2nd edition, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Ziegler. Fast (multi-)evaluation of linearly recurrent sequences: Improvements and applications. 2005. http://arxiv.org/abs/cs/0511033.Google ScholarGoogle Scholar

Index Terms

  1. Evaluating parametric holonomic sequences using rectangular splitting

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          ISSAC '14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation
          July 2014
          444 pages
          ISBN:9781450325011
          DOI:10.1145/2608628

          Copyright © 2014 ACM

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 23 July 2014

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          ISSAC '14 Paper Acceptance Rate51of96submissions,53%Overall Acceptance Rate350of728submissions,48%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader
        About Cookies On This Site

        We use cookies to ensure that we give you the best experience on our website.

        Learn more

        Got it!