skip to main content
10.1145/2616498.2616509acmotherconferencesArticle/Chapter ViewAbstractPublication PagesxsedeConference Proceedingsconference-collections
research-article

Detailed computational modeling of laminar and turbulent sooting flames

Authors Info & Claims
Published:13 July 2014Publication History

ABSTRACT

This study reports development and validation of two parallel flame solvers with soot models based on the open-source computation fluid dynamics (CFD) toolbox code OpenFOAM. First, a laminar flame solver is developed and validated against experimental data. A semi-empirical two-equation soot model and a detailed soot model using a method of moments with interpolative closure (MOMIC) are implemented in the laminar flame solver. An optically thin radiation model including gray soot radiation is also implemented. Preliminary results using these models show good agreement with experimental data for the laminar axisymmetric diffusion flame studied. Second, a turbulent flame solver is developed using Reynolds-averaged equations and transported probability density function (tPDF) method. The MOMIC soot model is implemented on this turbulent solver. A sophisticated photon Monte-Carlo (PMC) model with line-by-line spectral radiation database for modeling is also implemented on the turbulent solver. The validation of the turbulent solver is under progress. Both the solvers show good scalability for a moderate-sized chemical mechanism, and can be expected to scale even more strongly when larger chemical mechanisms are used.

References

  1. OpenFOAM. www.openfoam.com, 2010.Google ScholarGoogle Scholar
  2. J. Appel, H. Bockhorn, and M. Frenklach. Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combust. Flame, 121:122--136, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  3. R. S. Barlow, A. N. Karpetis, J. H. Frank, and J. Y. Chen. Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combustion and Flame, 127:2102--2118, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  4. H. Bockhorn. Soot Formation in Combustion: Mechanisms and Models. Springer-Verlag, New York, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  5. H. Bockhorn, A. D'Anna, A. F. Sarofim, and H. Wang. Combustion Generated Fine Carbonaceous Particles. KIT Scientific Publishing, Karlsruhe, 2009.Google ScholarGoogle Scholar
  6. T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. Schultz, M. G. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J. W. Kaiser, J. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zender. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118:1--173, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  7. D. C. Cohen and A. C. Hindmarsh. Cvode, a stiff/nonstiff ode solver in c. In SciCADE95: scientific computing and differential equations, 1995.Google ScholarGoogle Scholar
  8. M. Frenklach. Method of moments with interpolative closure. Chemical Engineering Science, 57:2229--2239, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. Frenklach and H. Wang. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame, 110:173--221, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  10. H. Guo, F. Liu, and G. J. Smallwood. Soot and no formation in counterflow ethylene/oxygen/nitrogen diffusion flames. Combustion Theory and Modeling, 8:475--489, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  11. D. C. Haworth. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci., 36:168--259, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  12. B. S. Haynes and H. G. Wagner. Soot formation. Prog. Energy Combust. Sci., 7:229--273, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  13. A. C. Hindmarsh and R. Serban. User documentation for cvode v 2.7.0. Technical report, Lawrence Livermore National Laboratory, 2012.Google ScholarGoogle Scholar
  14. A. E. Karataş and Ö. L. Gülder. Soot formation in high pressure laminar diffusion flames. Prog. Energy Combust. Sci., 38:818--845, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller. A fortran computer code package for the evaluation of gas phase multicomponent transport properties. Sand86-8246 unlimited release, Sandia National Laboratory, 1986.Google ScholarGoogle Scholar
  16. I. M. Kennedy. Models of soot formation and oxidation. Prog. Energy Combust. Sci., 23:95--132, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  17. I. M. Kennedy, C. Yam, D. C. Rapp, and R. J. Santoro. Modeling and measurements of soot and species in a laminar diffusion flame. Combustion and Flame, 107:368--382, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  18. C. K. Law. Comprehensive description of chemistry in combustion modeling. Combustion Science and Technology, 177:845--870, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  19. S. Y. Lee, S. R. Turns, and R. J. Santoro. Measurements of soot, OH, and PAH concentrations in turbulent ethylene/air jet flames. Combust. Flame, 156:2264--2275, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  20. S. Lei, J. Cai, M. F. Modest, A. Dasgupta, and D. C. Haworth. Photon Monte Carlo model for high-pressure reacting laminar flows. In Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  21. K. M. Leung, R. P. Lindstedt, and W. P. Jones. A simplified reaction mechanism for soot formation in non premixed flames. Combustion and Flame, 87:289--305, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  22. Z. Luo, C. S. Yoo, E. S. Richardson, J. H. Chen, C. K. Law, and T. F. Lu. Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combustion and Flame, 159:265--274, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  23. MECHMOD. http://garfield.chem.elte.hu/Combustion/mechmod.htm, 2010.Google ScholarGoogle Scholar
  24. R. S. Mehta. Detailed Modeling of Soot Formation and Turbulence -- Radiation Interactions in Turbulent Jet Flames. Ph.d. diss., The Pennsylvania State University, University Park, PA, USA, 2008.Google ScholarGoogle Scholar
  25. R. S. Mehta, D. C. Haworth, and M. F. Modest. An assessment of gas-phase reaction mechanisms and soot models for laminar atmospheric-pressure ethylene-air flames. Proc. Combust. Inst., 32:1327--1337, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  26. R. S. Mehta, D. C. Haworth, and M. F. Modest. Composition PDF/photon Monte Carlo modeling of moderately sooting turbulent jet flames. Combust. Flame, 157:982--994, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  27. R. S. Mehta, M. F. Modest, and D. C. Haworth. Radiation characteristics and turbulence-radiation interaction in sooting turbulent jet flames. Combust. Theory Modell., 14:105--124, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  28. G. Pal. Spectral Modeling of Radiation in Combustion Systems. Ph.d. diss., The Pennsylvania State University, University Park, PA, USA, 2010.Google ScholarGoogle Scholar
  29. Z. Qin, V. V. Lissianski, H. Yang, W. C. Gardiner, S. G. Davis, and H. Wang. Combustion chemistry of propane: A case study of detailed reaction mechanism optimization. In Proceedings of the Combustion Institute, volume 28, pages 1663--1669, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  30. T. Ren and M. Modest. A hybrid wavenumber selection scheme for line-by-line photon Monte Carlo simulations in high-temperature gases. J. Heat Transfer, 135:084501(1) -- 084501(4), 2013.Google ScholarGoogle ScholarCross RefCross Ref
  31. H. Richter and J. Howard. Formation of polycyclic aromatic hydrocarbons and their growth to soot -- a review of chemical reaction pathways. Prog. Energy Combust. Sci., 26:565--608, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  32. S. P. Roy, P. G. Arias, V. Lecoustre, H. G. Im, D. C. Haworth, and A. Trouvé. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure. Aerosol Sci. Technol., 48:379--391, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  33. S. P. Roy and D. C. Haworth. Comparisons of section- and moment-based soot aerosol dynamics models for laminar premixed ethylene flames. Combust. Theory Model. Under review.Google ScholarGoogle Scholar
  34. R. J. Santoro, H. G. Semerjian, and R. A. Dobbins. Soot particle measurements in diffusion flames. Combustion and Flame, 51:203--218, 1983.Google ScholarGoogle ScholarCross RefCross Ref
  35. U.S. EPA. Integrated science assessment for particulate matter (final report). Technical Report EPA/600/R-08/139F, U. S. Environment Protection Agency, Washington, DC, 2009.Google ScholarGoogle Scholar
  36. H. Wang. Formation of nascent soot and other condensed-phase materials in flames. Proc. Comb. Inst., 33:41--67, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  37. H. Wang, D. X. Du, C. J. Sung, and C. K. Law. Experiments and numerical simulation on soot formation in opposed-jet ethylene diffusion flames. In Twenty-Sixth Symposium on Combustion/The Combustion Institute, pages 2359--2368, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  38. H. Wang and A. Laskin. A comprehensive kinetic model of ethylene and acetylene oxidation at high temperatures. Technical report, AFOSR, 1991.Google ScholarGoogle Scholar
  39. X. Y. Zhao, D. C. Haworth, and E. D. Huckaby. Transported pdf modeling of nonpremixed turbulent co/H2/N2 jet flames. Combustion Science and Technology, 184:676--693, 2012.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Detailed computational modeling of laminar and turbulent sooting flames

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        XSEDE '14: Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment
        July 2014
        445 pages
        ISBN:9781450328937
        DOI:10.1145/2616498
        • General Chair:
        • Scott Lathrop,
        • Program Chair:
        • Jay Alameda

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 July 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        XSEDE '14 Paper Acceptance Rate80of120submissions,67%Overall Acceptance Rate129of190submissions,68%
      • Article Metrics

        • Downloads (Last 12 months)1
        • Downloads (Last 6 weeks)1

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader