ABSTRACT
This study reports development and validation of two parallel flame solvers with soot models based on the open-source computation fluid dynamics (CFD) toolbox code OpenFOAM. First, a laminar flame solver is developed and validated against experimental data. A semi-empirical two-equation soot model and a detailed soot model using a method of moments with interpolative closure (MOMIC) are implemented in the laminar flame solver. An optically thin radiation model including gray soot radiation is also implemented. Preliminary results using these models show good agreement with experimental data for the laminar axisymmetric diffusion flame studied. Second, a turbulent flame solver is developed using Reynolds-averaged equations and transported probability density function (tPDF) method. The MOMIC soot model is implemented on this turbulent solver. A sophisticated photon Monte-Carlo (PMC) model with line-by-line spectral radiation database for modeling is also implemented on the turbulent solver. The validation of the turbulent solver is under progress. Both the solvers show good scalability for a moderate-sized chemical mechanism, and can be expected to scale even more strongly when larger chemical mechanisms are used.
- OpenFOAM. www.openfoam.com, 2010.Google Scholar
- J. Appel, H. Bockhorn, and M. Frenklach. Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combust. Flame, 121:122--136, 2000.Google Scholar
Cross Ref
- R. S. Barlow, A. N. Karpetis, J. H. Frank, and J. Y. Chen. Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combustion and Flame, 127:2102--2118, 2001.Google Scholar
Cross Ref
- H. Bockhorn. Soot Formation in Combustion: Mechanisms and Models. Springer-Verlag, New York, 1994.Google Scholar
Cross Ref
- H. Bockhorn, A. D'Anna, A. F. Sarofim, and H. Wang. Combustion Generated Fine Carbonaceous Particles. KIT Scientific Publishing, Karlsruhe, 2009.Google Scholar
- T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. Schultz, M. G. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J. W. Kaiser, J. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zender. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118:1--173, 2013.Google Scholar
Cross Ref
- D. C. Cohen and A. C. Hindmarsh. Cvode, a stiff/nonstiff ode solver in c. In SciCADE95: scientific computing and differential equations, 1995.Google Scholar
- M. Frenklach. Method of moments with interpolative closure. Chemical Engineering Science, 57:2229--2239, 2002.Google Scholar
Cross Ref
- M. Frenklach and H. Wang. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame, 110:173--221, 1997.Google Scholar
Cross Ref
- H. Guo, F. Liu, and G. J. Smallwood. Soot and no formation in counterflow ethylene/oxygen/nitrogen diffusion flames. Combustion Theory and Modeling, 8:475--489, 2004.Google Scholar
Cross Ref
- D. C. Haworth. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci., 36:168--259, 2010.Google Scholar
Cross Ref
- B. S. Haynes and H. G. Wagner. Soot formation. Prog. Energy Combust. Sci., 7:229--273, 1981.Google Scholar
Cross Ref
- A. C. Hindmarsh and R. Serban. User documentation for cvode v 2.7.0. Technical report, Lawrence Livermore National Laboratory, 2012.Google Scholar
- A. E. Karataş and Ö. L. Gülder. Soot formation in high pressure laminar diffusion flames. Prog. Energy Combust. Sci., 38:818--845, 2012.Google Scholar
Cross Ref
- R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller. A fortran computer code package for the evaluation of gas phase multicomponent transport properties. Sand86-8246 unlimited release, Sandia National Laboratory, 1986.Google Scholar
- I. M. Kennedy. Models of soot formation and oxidation. Prog. Energy Combust. Sci., 23:95--132, 1997.Google Scholar
Cross Ref
- I. M. Kennedy, C. Yam, D. C. Rapp, and R. J. Santoro. Modeling and measurements of soot and species in a laminar diffusion flame. Combustion and Flame, 107:368--382, 1996.Google Scholar
Cross Ref
- C. K. Law. Comprehensive description of chemistry in combustion modeling. Combustion Science and Technology, 177:845--870, 2005.Google Scholar
Cross Ref
- S. Y. Lee, S. R. Turns, and R. J. Santoro. Measurements of soot, OH, and PAH concentrations in turbulent ethylene/air jet flames. Combust. Flame, 156:2264--2275, 2009.Google Scholar
Cross Ref
- S. Lei, J. Cai, M. F. Modest, A. Dasgupta, and D. C. Haworth. Photon Monte Carlo model for high-pressure reacting laminar flows. In Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, 2012.Google Scholar
Cross Ref
- K. M. Leung, R. P. Lindstedt, and W. P. Jones. A simplified reaction mechanism for soot formation in non premixed flames. Combustion and Flame, 87:289--305, 1991.Google Scholar
Cross Ref
- Z. Luo, C. S. Yoo, E. S. Richardson, J. H. Chen, C. K. Law, and T. F. Lu. Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combustion and Flame, 159:265--274, 2011.Google Scholar
Cross Ref
- MECHMOD. http://garfield.chem.elte.hu/Combustion/mechmod.htm, 2010.Google Scholar
- R. S. Mehta. Detailed Modeling of Soot Formation and Turbulence -- Radiation Interactions in Turbulent Jet Flames. Ph.d. diss., The Pennsylvania State University, University Park, PA, USA, 2008.Google Scholar
- R. S. Mehta, D. C. Haworth, and M. F. Modest. An assessment of gas-phase reaction mechanisms and soot models for laminar atmospheric-pressure ethylene-air flames. Proc. Combust. Inst., 32:1327--1337, 2009.Google Scholar
Cross Ref
- R. S. Mehta, D. C. Haworth, and M. F. Modest. Composition PDF/photon Monte Carlo modeling of moderately sooting turbulent jet flames. Combust. Flame, 157:982--994, 2010.Google Scholar
Cross Ref
- R. S. Mehta, M. F. Modest, and D. C. Haworth. Radiation characteristics and turbulence-radiation interaction in sooting turbulent jet flames. Combust. Theory Modell., 14:105--124, 2010.Google Scholar
Cross Ref
- G. Pal. Spectral Modeling of Radiation in Combustion Systems. Ph.d. diss., The Pennsylvania State University, University Park, PA, USA, 2010.Google Scholar
- Z. Qin, V. V. Lissianski, H. Yang, W. C. Gardiner, S. G. Davis, and H. Wang. Combustion chemistry of propane: A case study of detailed reaction mechanism optimization. In Proceedings of the Combustion Institute, volume 28, pages 1663--1669, 2000.Google Scholar
Cross Ref
- T. Ren and M. Modest. A hybrid wavenumber selection scheme for line-by-line photon Monte Carlo simulations in high-temperature gases. J. Heat Transfer, 135:084501(1) -- 084501(4), 2013.Google Scholar
Cross Ref
- H. Richter and J. Howard. Formation of polycyclic aromatic hydrocarbons and their growth to soot -- a review of chemical reaction pathways. Prog. Energy Combust. Sci., 26:565--608, 2000.Google Scholar
Cross Ref
- S. P. Roy, P. G. Arias, V. Lecoustre, H. G. Im, D. C. Haworth, and A. Trouvé. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure. Aerosol Sci. Technol., 48:379--391, 2014.Google Scholar
Cross Ref
- S. P. Roy and D. C. Haworth. Comparisons of section- and moment-based soot aerosol dynamics models for laminar premixed ethylene flames. Combust. Theory Model. Under review.Google Scholar
- R. J. Santoro, H. G. Semerjian, and R. A. Dobbins. Soot particle measurements in diffusion flames. Combustion and Flame, 51:203--218, 1983.Google Scholar
Cross Ref
- U.S. EPA. Integrated science assessment for particulate matter (final report). Technical Report EPA/600/R-08/139F, U. S. Environment Protection Agency, Washington, DC, 2009.Google Scholar
- H. Wang. Formation of nascent soot and other condensed-phase materials in flames. Proc. Comb. Inst., 33:41--67, 2011.Google Scholar
Cross Ref
- H. Wang, D. X. Du, C. J. Sung, and C. K. Law. Experiments and numerical simulation on soot formation in opposed-jet ethylene diffusion flames. In Twenty-Sixth Symposium on Combustion/The Combustion Institute, pages 2359--2368, 1996.Google Scholar
Cross Ref
- H. Wang and A. Laskin. A comprehensive kinetic model of ethylene and acetylene oxidation at high temperatures. Technical report, AFOSR, 1991.Google Scholar
- X. Y. Zhao, D. C. Haworth, and E. D. Huckaby. Transported pdf modeling of nonpremixed turbulent co/H2/N2 jet flames. Combustion Science and Technology, 184:676--693, 2012.Google Scholar
Cross Ref
Index Terms
Detailed computational modeling of laminar and turbulent sooting flames
Recommendations
A micropolar material model for turbulent SPH fluids
SCA '17: Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer AnimationIn this paper we introduce a novel micropolar material model for the simulation of turbulent inviscid fluids. The governing equations are solved by using the concept of Smoothed Particle Hydrodynamics (SPH). As already investigated in previous works, ...






Comments