skip to main content
research-article

Anisotropic Delaunay Meshes of Surfaces

Published:02 March 2015Publication History
Skip Abstract Section

Abstract

Anisotropic simplicial meshes are triangulations with elements elongated along prescribed directions. Anisotropic meshes have been shown well suited for interpolation of functions or solving PDEs. They can also significantly enhance the accuracy of a surface representation. Given a surface S endowed with a metric tensor field, we propose a new approach to generate an anisotropic mesh that approximates S with elements shaped according to the metric field. The algorithm relies on the well-established concepts of restricted Delaunay triangulation and Delaunay refinement and comes with theoretical guarantees. The star of each vertex in the output mesh is Delaunay for the metric attached to this vertex. Each facet has a good aspect ratio with respect to the metric specified at any of its vertices. The algorithm is easy to implement. It can mesh various types of surfaces like implicit surfaces, polyhedra, or isosurfaces in 3D images. It can handle complicated geometries and topologies, and very anisotropic metric fields.

References

  1. P. Alliez, D. Cohen Teiner, M. Yvinec, and M. Desbrun. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 617--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. N. Amenta and M. Bern. 1999. Surface reconstruction by Voronoi filtering. Discr. Comput. Geom. 22, 4, 481--504.Google ScholarGoogle ScholarCross RefCross Ref
  3. N. Amenta, S. Choi, T. K. Dey, and N. Leekha. 2002. A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Appl. 12, 125--141.Google ScholarGoogle ScholarCross RefCross Ref
  4. L. Antani, C., Delage and P. Alliez. 2008. Mesh sizing with additively weighted Voronoi diagrams. In Proceedings of the 16th International Meshing Roundtable (IMR'08). Springer, 335--346.Google ScholarGoogle Scholar
  5. S. Azernikov and A. Fischer. 2005. Anisotropic meshing of implicit surfaces. In Proceedings of the International Conference on Shape Modeling and Applications (SMI'05). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J.-D. Boissonnat and A. Ghosh. 2010. Manifold reconstruction using tangential Delaunay complexes. In Proceedings of the 26th Annual Symposium on Computational Geometry (SCG'10). http://hal.archives-ouvertes.fr/inria-00440337/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J.-D. Boissonnat and S. Oudot. 2005. Provably good sampling and meshing of surfaces. Graph. Models 67, 405--451. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J.-D. Boissonnat, C. Wormser, and M. Yvinec. 2008. Locally uniform anisotropic meshing. In Proceedings of the 24th Annual Symposium on Computational Geometry (SCG'08). ACM Press, New York, 270--277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J.-D. Boissonnat, C. Wormser, and M. Yvinec. 2011. Anisotropic Delaunay mesh generation. Tech. rep. RR-7712, INRIA. https://hal.inria.fr/file/index/docid/615486/filename/RR-7712.pdf.Google ScholarGoogle Scholar
  10. H. Borouchaki, P. L. George, F. Hecht, P. Laug, and E. Saltel. 1997. Delaunay mesh generation governed by metric specifications. Part I algorithms. Finite Elem. Anal. Des. 25, 1--2, 61--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. F. Bossen and P. Heckbert. 1996. A pliant method for anisotropic mesh generation. In Proceedings of the 5th International Meshing Roundtable (IMR'96).Google ScholarGoogle Scholar
  12. G. D. Canas and D. J. Gortler. 2011. Orphan-free anisotropic Voronoi diagrams. Discr. Comput. Geom. 46, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. F. Cazals and M. Pouget. 2005. Estimating differential quantities using polynomial fitting of osculating jets. Comput.- Aided Geom. Des. 22, 2, 121--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. CGAL. 2014. Computational geometry algorithms library. http://www.cgal.org.Google ScholarGoogle Scholar
  15. S.-W. Cheng, T. K. Dey, E. A. Ramos, and R. Wenger. 2006. Anisotropic surface meshing. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'06). ACM Press, New York, 202--211. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. L. P. Chew. 1993. Guaranteed-quality mesh generation for curved surfaces. In Proceedings of the 9th Annual Symposium on Computational Geometry (SCG'93). ACM Press, New York, 274--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. F. D'azevedo, and R. B. Simpson. 1989. On optimal interpolation triangle incidences. SIAM J. Sci. Statist. Comput. 10, 6, 1063--1075. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. K. Dey and J. A. Levine. 2009. Delaunay meshing of piecewise smooth complexes without expensive predicates. Algor. 2, 4, 1327--1349.Google ScholarGoogle ScholarCross RefCross Ref
  19. Q. Du and D. Wang. 2005. Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput. 26, 3, 737--761. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. S. Heckbert and M. Garland. 1999. Optimal triangulation and quadric-based surface simplification. Comput. Geom. 14, 49--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Hughes. 2003. Differential geometry of implicit surfaces in 3-space -A primer. Tech. rep., CS-03-05. Department of Computer Science, Brown University, Providence, R.I.Google ScholarGoogle Scholar
  22. X. Jiao, A. Colombi, X. Ni, and J. C. Hart. 2006. Anisotropic mesh adaptation for evolving triangulated surfaces. In Proceedings of the 15th International Meshing Roundtable (IMR'06). 173--190.Google ScholarGoogle Scholar
  23. F. Labelle and J. R. Shewchuk. 2003. Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In Proceedings of the 19th Symposium on Computational Geometry (SCG'03). ACM Press, New York, 191--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. G. Leibon and D. Letscher. 2000. Delaunay triangulations and Voronoi diagrams for riemannian manifolds. In Proceedings of the 16th Symposium on Computational Geometry (SCG'00). 341--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. B. Levy and Y. Liu. 2010. Lp centroidal Voronoi tessellation and its applications. ACM Trans. Graph. 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. X.-Y. Li. 2003. Generating well-shaped d-dimensional Delaunay meshes. Theor. Comput. Sci. 296, 1, 145--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. X.-Y. Li and S.-H. Teng. 2001. Generating well-shaped Delaunay meshed in 3D. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'01). SIAM, 28--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. X.-Y. Li, S.-H. Teng, and A. Ungor. 1999. Biting ellipses to generate anisotropic mesh. In Proceedings of the 8th International Meshing Roundtable (IMR'99).Google ScholarGoogle Scholar
  29. J.-M. Mirebeau. 2010. Optimal meshes for finite elements of arbitrary order. Construct. Approx. 32, 2, 339--383.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. Schoen. 2008. Robust, guaranteed-quality anisotropic mesh generation. M.S. thesis, University of California, Berkeley.Google ScholarGoogle Scholar
  31. J. R. Shewchuk. 2002. What is a good linear finite element-? Interpolation, conditioning, anisotropy, and quality measures. http://www.cs.cmu.edu/~jrs/jrspapers.html.Google ScholarGoogle Scholar
  32. J. R. Shewchuk. 2005. Star splaying: An algorithm for repairing Delaunay triangulations and convex hulls. In Proceedings of the 21st Symposium on Computational Geometry (SCG'05). ACM Press, New York, 237--246. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 34, Issue 2
    February 2015
    136 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2742222
    Issue’s Table of Contents

    Copyright © 2015 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 2 March 2015
    • Accepted: 1 March 2013
    • Revised: 1 January 2013
    • Received: 1 September 2011
    Published in tog Volume 34, Issue 2

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader