Abstract
We propose a new spectral analysis of the variance in Monte Carlo integration, expressed in terms of the power spectra of the sampling pattern and the integrand involved. We build our framework in the Euclidean space using Fourier tools and on the sphere using spherical harmonics. We further provide a theoretical background that explains how our spherical framework can be extended to the hemispherical domain. We use our framework to estimate the variance convergence rate of different state-of-the-art sampling patterns in both the Euclidean and spherical domains, as the number of samples increases. Furthermore, we formulate design principles for constructing sampling methods that can be tailored according to available resources. We validate our theoretical framework by performing numerical integration over several integrands sampled using different sampling patterns.
Supplemental Material
Available for Download
Supplemental files
- Arvo, J. 1995. Stratified sampling of spherical triangles. In Proc. SIGGRAPH '95, ACM, 437--438. Google Scholar
Digital Library
- Arvo, J. 2001. Stratified sampling of 2-manifolds. SIGGRAPH 2001 Course Notes 29, 2.Google Scholar
- Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd's method. ACM Trans. on Graphics 28, 3, 86:1--8. Google Scholar
Digital Library
- Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel Poisson disk sampling with spectrum analysis on surfaces. In Proc. SIGGRAPH Asia '10, ACM, 166:1--166:10. Google Scholar
Digital Library
- Brandolini, L., Colzani, L., and Torlaschi, A. 2001. Mean square decay of Fourier transforms in euclidean and non euclidean spaces. Tohoku Math. J. (2) 53, 3, 467--478.Google Scholar
- Brauchart, J., Saff, E., Sloan, I., and Womersley, R. 2014. QMC designs: optimal order Quasi Monte Carlo integration schemes on the sphere. Mathematics of Computation.Google Scholar
- Bridson, R. 2007. Fast Poisson disk sampling in arbitrary dimensions. In Proc. SIGGRAPH '07 Sketches, ACM, Proc. SIGGRAPH '07. Google Scholar
Digital Library
- Choirat, C., and Seri, R. 2013. Computational aspects of cuifreeden statistics for equidistribution on the sphere. Mathematics of Computation 82, 284, 2137--2156.Google Scholar
- Cline, D., Jeschke, S., White, K., Razdan, A., and Wonka, P. 2009. Dart throwing on surfaces. In Proc. EGSR '09, Eurographics Association, 1217--1226. Google Scholar
Digital Library
- Cohen, M., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. ACM Trans. on Graphics 22, 3, 287--294. Google Scholar
Digital Library
- Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 51--72. Google Scholar
Digital Library
- Crow, F. C. 1977. The aliasing problem in computer-generated shaded images. Commun. ACM 20, 11, 799--805. Google Scholar
Digital Library
- Cui, J., and Freeden, W. 1997. Equidistribution on the sphere. SIAM Scientific Computing 18, 2, 595--609. Google Scholar
Digital Library
- de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. Proc. SIGGRAPH Asia '12 31, 171:1--171:10. Google Scholar
Digital Library
- Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. In Proc. SIGGRAPH '85, ACM, 69--78. Google Scholar
Digital Library
- Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. In Proc. SIGGRAPH '06, ACM, 503--508. Google Scholar
Digital Library
- Durand, F. 2011. A frequency analysis of Monte-Carlo and other numerical integration schemes. MIT CSAIL Technical report TR-2011-052.Google Scholar
- Gabrielli, A., and Torquato, S. 2004. Voronoi and void statistics for superhomogeneous point processes. Physical Review E 70, 4, 041105.Google Scholar
Cross Ref
- Gamito, M. N., and Maddock, S. C. 2009. Accurate multidimensional Poisson-disk sampling. ACM Trans. on Graphics 29, 1, 8. Google Scholar
Digital Library
- Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., and Bartelmann, M. 2005. Healpix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere. The Astrophysical Journal 622, 2, 759.Google Scholar
Cross Ref
- Groemer, H. 1996. Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press. Cambridge Books Online.Google Scholar
- Hansen, J.-P., and McDonald, I. R. 1990. Theory of simple liquids. Elsevier.Google Scholar
- Heck, D., Schlömer, T., and Deussen, O. 2013. Blue noise sampling with controlled aliasing. ACM Trans. on Graphics 32, 3, 25:1--25:12. Google Scholar
Digital Library
- Hesse, K., Sloan, I., and Womersley, R. 2010. Numerical integration on the sphere. In Handbook of Geomathematics, W. Freeden, M. Nashed, and T. Sonar, Eds. Springer Berlin Heidelberg, 1185--1219.Google Scholar
- Jarosz, W., Carr, N. A., and Jensen, H. W. 2009. Importance sampling spherical harmonics. Computer Graphics Forum (Proceedings of Eurographics) 28, 2 (Apr.), 577--586.Google Scholar
Cross Ref
- Kautz, J., Sloan, P.-P., and Snyder, J. 2002. Fast, arbitrary brdf shading for low-frequency lighting using spherical harmonics. In Proc. of the 13th Eurographics Workshop on Rendering, Eurographics Association, 291--296. Google Scholar
Digital Library
- Kazhdan, M. 2007. An approximate and efficient method for optimal rotation alignment of 3d models. IEEE Trans. Pattern Anal. Mach. Intell. 29, 7, 1221--1229. Google Scholar
Digital Library
- Keller, A., Premoze, S., and Raab, M. 2012. Advanced (quasi) Monte Carlo methods for image synthesis. In SIGGRAPH '12 Courses, ACM, New York, USA, 21:1--21:46. Google Scholar
Digital Library
- Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive wang tiles for real-time blue noise. ACM Trans. on Graphics 25, 3, 509--518. Google Scholar
Digital Library
- Lemieux, C. 2009. Monte Carlo and Quasi Monte Carlo Sampling. Springer.Google Scholar
- Li, H., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Anisotropic blue noise sampling. In Proc. SIGGRAPH Asia '10, ACM, 167:1--167:12. Google Scholar
Digital Library
- Marques, R., Bouville, C., Ribardire, M., Santos, L. P., and Bouatouch, K. 2013. Spherical Fibonacci point sets for illumination integrals. Computer Graphics Forum 32, 8, 134--143.Google Scholar
Cross Ref
- McEwen, J., and Wiaux, Y. 2011. A novel sampling theorem on the sphere. Signal Processing, IEEE Trans. on 59, 12, 5876--5887. Google Scholar
Digital Library
- Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In Proc. SIGGRAPH '87, 65--72. Google Scholar
Digital Library
- Mitchell, D. 1991. Spectrally optimal sampling for distributed ray tracing. In Proc. SIGGRAPH '91, vol. 25, 157--164. Google Scholar
Digital Library
- Mitchell, D. P. 1996. Consequences of stratified sampling in graphics. In Proc. SIGGRAPH '96, ACM, 277--280. Google Scholar
Digital Library
- Niederreiter, H. 1992. Random Number Generation and Quasi-Monte-Carlo Methods. SIAM. Google Scholar
Digital Library
- Ostromoukhov, V. 2007. Sampling with polyominoes. In ACM Trans. on Graphics, vol. 26, 78. Google Scholar
Digital Library
- Öztireli, A. C., and Gross, M. 2012. Analysis and synthesis of point distributions based on pair correlation. ACM Trans. Graph. 31, 6, 174:1--174:6. Google Scholar
Digital Library
- Peyrot, J.-L., Payan, F., and Antonini, M. 2013. Feature-preserving direct blue noise sampling for surface meshes. In Eurographics 2013, 4 pages.Google Scholar
- Ramamoorthi, R., and Hanrahan, P. 2001. A signal-processing framework for inverse rendering. In Proc. SIGGRAPH '01, ACM, 117--128. Google Scholar
Digital Library
- Ramamoorthi, R., Anderson, J., Meyer, M., and Nowrouzezahrai, D. 2012. A theory of monte carlo visibility sampling. ACM Trans. on Graphics 31, 5, 121:1--121:16. Google Scholar
Digital Library
- Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Proc. Symp. High Performance Graphics '11, ACM, 135--142. Google Scholar
Digital Library
- Shirley, P. 1991. Discrepancy as a quality measure for sample distributions. In Proc. Eurographics '91, 183--194.Google Scholar
- Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In Proc. SIGGRAPH '02, ACM, 527--536. Google Scholar
Digital Library
- Subr, K., and Kautz, J. 2013. Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration. ACM Trans. on Graphics 32, 4, 128:1--128:12. Google Scholar
Digital Library
- Subr, K., Nowrouzezahrai, D., Jarosz, W., Kautz, J., and Mitchell, K. 2014. Error analysis of estimators that use combinations of stochastic sampling strategies for direct illumination. Computer Graphics Forum (Proceedings of EGSR) 33, 4 (June), 93102. Google Scholar
Digital Library
- Torquato, S., Uche, O., and Stillinger, F. 2006. Random sequential addition of hard spheres in high euclidean dimensions. Physical Review E 74, 6, 061308.Google Scholar
Cross Ref
- Ulichney, R. 1987. Digital Halftoning. MIT Press. Google Scholar
Digital Library
- Ureña, C., Fajardo, M., and King, A. 2013. An area-preserving parametrization for spherical rectangles. Computer Graphics Forum 32, 4, 59--66. Google Scholar
Digital Library
- Wachtel, F., Pilleboue, A., Coeurjolly, D., Breeden, K., Singh, G., Cathelin, G., de Goes, F., Desbrun, M., and Ostromoukhov, V. 2014. Fast tile-based adaptive sampling with user-specified Fourier spectra. ACM Trans. on Graphics 33, 4, 56:1--56:11. Google Scholar
Digital Library
- Wieczorek, M. A., and Simons, F. J. 2005. Localized spectral analysis on the sphere. Geophysical Journal International 162, 3, 655--675.Google Scholar
Cross Ref
- Xu, Y., Hu, R., Gotsman, C., and Liu, L. 2012. Blue noise sampling of surfaces. Computers & Graphics 36, 4, 232--240. Google Scholar
Digital Library
- Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point sampling with general noise spectrum. ACM Transactions on Graphics (TOG) 31, 4, 76. Google Scholar
Digital Library
Index Terms
Variance analysis for Monte Carlo integration
Recommendations
Convergence analysis for anisotropic monte carlo sampling spectra
Traditional Monte Carlo (MC) integration methods use point samples to numerically approximate the underlying integral. This approximation introduces variance in the integrated result, and this error can depend critically on the sampling patterns used ...
Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration
Each pixel in a photorealistic, computer generated picture is calculated by approximately integrating all the light arriving at the pixel, from the virtual scene. A common strategy to calculate these high-dimensional integrals is to average the ...
Monte Carlo efficiency improvement by multiple sampling of conditioned integration variables
We present a technique that permits to increase the efficiency of multidimensional Monte Carlo algorithms when the sampling of the first, unconditioned random variable consumes much more computational time than the sampling of the remaining, conditioned ...





Comments