skip to main content
research-article

Variance analysis for Monte Carlo integration

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We propose a new spectral analysis of the variance in Monte Carlo integration, expressed in terms of the power spectra of the sampling pattern and the integrand involved. We build our framework in the Euclidean space using Fourier tools and on the sphere using spherical harmonics. We further provide a theoretical background that explains how our spherical framework can be extended to the hemispherical domain. We use our framework to estimate the variance convergence rate of different state-of-the-art sampling patterns in both the Euclidean and spherical domains, as the number of samples increases. Furthermore, we formulate design principles for constructing sampling methods that can be tailored according to available resources. We validate our theoretical framework by performing numerical integration over several integrands sampled using different sampling patterns.

Skip Supplemental Material Section

Supplemental Material

a124.mp4

References

  1. Arvo, J. 1995. Stratified sampling of spherical triangles. In Proc. SIGGRAPH '95, ACM, 437--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arvo, J. 2001. Stratified sampling of 2-manifolds. SIGGRAPH 2001 Course Notes 29, 2.Google ScholarGoogle Scholar
  3. Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd's method. ACM Trans. on Graphics 28, 3, 86:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel Poisson disk sampling with spectrum analysis on surfaces. In Proc. SIGGRAPH Asia '10, ACM, 166:1--166:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Brandolini, L., Colzani, L., and Torlaschi, A. 2001. Mean square decay of Fourier transforms in euclidean and non euclidean spaces. Tohoku Math. J. (2) 53, 3, 467--478.Google ScholarGoogle Scholar
  6. Brauchart, J., Saff, E., Sloan, I., and Womersley, R. 2014. QMC designs: optimal order Quasi Monte Carlo integration schemes on the sphere. Mathematics of Computation.Google ScholarGoogle Scholar
  7. Bridson, R. 2007. Fast Poisson disk sampling in arbitrary dimensions. In Proc. SIGGRAPH '07 Sketches, ACM, Proc. SIGGRAPH '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Choirat, C., and Seri, R. 2013. Computational aspects of cuifreeden statistics for equidistribution on the sphere. Mathematics of Computation 82, 284, 2137--2156.Google ScholarGoogle Scholar
  9. Cline, D., Jeschke, S., White, K., Razdan, A., and Wonka, P. 2009. Dart throwing on surfaces. In Proc. EGSR '09, Eurographics Association, 1217--1226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cohen, M., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. ACM Trans. on Graphics 22, 3, 287--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Crow, F. C. 1977. The aliasing problem in computer-generated shaded images. Commun. ACM 20, 11, 799--805. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cui, J., and Freeden, W. 1997. Equidistribution on the sphere. SIAM Scientific Computing 18, 2, 595--609. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. Proc. SIGGRAPH Asia '12 31, 171:1--171:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. In Proc. SIGGRAPH '85, ACM, 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. In Proc. SIGGRAPH '06, ACM, 503--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Durand, F. 2011. A frequency analysis of Monte-Carlo and other numerical integration schemes. MIT CSAIL Technical report TR-2011-052.Google ScholarGoogle Scholar
  18. Gabrielli, A., and Torquato, S. 2004. Voronoi and void statistics for superhomogeneous point processes. Physical Review E 70, 4, 041105.Google ScholarGoogle ScholarCross RefCross Ref
  19. Gamito, M. N., and Maddock, S. C. 2009. Accurate multidimensional Poisson-disk sampling. ACM Trans. on Graphics 29, 1, 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., and Bartelmann, M. 2005. Healpix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere. The Astrophysical Journal 622, 2, 759.Google ScholarGoogle ScholarCross RefCross Ref
  21. Groemer, H. 1996. Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press. Cambridge Books Online.Google ScholarGoogle Scholar
  22. Hansen, J.-P., and McDonald, I. R. 1990. Theory of simple liquids. Elsevier.Google ScholarGoogle Scholar
  23. Heck, D., Schlömer, T., and Deussen, O. 2013. Blue noise sampling with controlled aliasing. ACM Trans. on Graphics 32, 3, 25:1--25:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hesse, K., Sloan, I., and Womersley, R. 2010. Numerical integration on the sphere. In Handbook of Geomathematics, W. Freeden, M. Nashed, and T. Sonar, Eds. Springer Berlin Heidelberg, 1185--1219.Google ScholarGoogle Scholar
  25. Jarosz, W., Carr, N. A., and Jensen, H. W. 2009. Importance sampling spherical harmonics. Computer Graphics Forum (Proceedings of Eurographics) 28, 2 (Apr.), 577--586.Google ScholarGoogle ScholarCross RefCross Ref
  26. Kautz, J., Sloan, P.-P., and Snyder, J. 2002. Fast, arbitrary brdf shading for low-frequency lighting using spherical harmonics. In Proc. of the 13th Eurographics Workshop on Rendering, Eurographics Association, 291--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kazhdan, M. 2007. An approximate and efficient method for optimal rotation alignment of 3d models. IEEE Trans. Pattern Anal. Mach. Intell. 29, 7, 1221--1229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Keller, A., Premoze, S., and Raab, M. 2012. Advanced (quasi) Monte Carlo methods for image synthesis. In SIGGRAPH '12 Courses, ACM, New York, USA, 21:1--21:46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive wang tiles for real-time blue noise. ACM Trans. on Graphics 25, 3, 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lemieux, C. 2009. Monte Carlo and Quasi Monte Carlo Sampling. Springer.Google ScholarGoogle Scholar
  31. Li, H., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Anisotropic blue noise sampling. In Proc. SIGGRAPH Asia '10, ACM, 167:1--167:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Marques, R., Bouville, C., Ribardire, M., Santos, L. P., and Bouatouch, K. 2013. Spherical Fibonacci point sets for illumination integrals. Computer Graphics Forum 32, 8, 134--143.Google ScholarGoogle ScholarCross RefCross Ref
  33. McEwen, J., and Wiaux, Y. 2011. A novel sampling theorem on the sphere. Signal Processing, IEEE Trans. on 59, 12, 5876--5887. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In Proc. SIGGRAPH '87, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mitchell, D. 1991. Spectrally optimal sampling for distributed ray tracing. In Proc. SIGGRAPH '91, vol. 25, 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Mitchell, D. P. 1996. Consequences of stratified sampling in graphics. In Proc. SIGGRAPH '96, ACM, 277--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Niederreiter, H. 1992. Random Number Generation and Quasi-Monte-Carlo Methods. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ostromoukhov, V. 2007. Sampling with polyominoes. In ACM Trans. on Graphics, vol. 26, 78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Öztireli, A. C., and Gross, M. 2012. Analysis and synthesis of point distributions based on pair correlation. ACM Trans. Graph. 31, 6, 174:1--174:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Peyrot, J.-L., Payan, F., and Antonini, M. 2013. Feature-preserving direct blue noise sampling for surface meshes. In Eurographics 2013, 4 pages.Google ScholarGoogle Scholar
  41. Ramamoorthi, R., and Hanrahan, P. 2001. A signal-processing framework for inverse rendering. In Proc. SIGGRAPH '01, ACM, 117--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ramamoorthi, R., Anderson, J., Meyer, M., and Nowrouzezahrai, D. 2012. A theory of monte carlo visibility sampling. ACM Trans. on Graphics 31, 5, 121:1--121:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Proc. Symp. High Performance Graphics '11, ACM, 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Shirley, P. 1991. Discrepancy as a quality measure for sample distributions. In Proc. Eurographics '91, 183--194.Google ScholarGoogle Scholar
  45. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In Proc. SIGGRAPH '02, ACM, 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Subr, K., and Kautz, J. 2013. Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration. ACM Trans. on Graphics 32, 4, 128:1--128:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Subr, K., Nowrouzezahrai, D., Jarosz, W., Kautz, J., and Mitchell, K. 2014. Error analysis of estimators that use combinations of stochastic sampling strategies for direct illumination. Computer Graphics Forum (Proceedings of EGSR) 33, 4 (June), 93102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Torquato, S., Uche, O., and Stillinger, F. 2006. Random sequential addition of hard spheres in high euclidean dimensions. Physical Review E 74, 6, 061308.Google ScholarGoogle ScholarCross RefCross Ref
  49. Ulichney, R. 1987. Digital Halftoning. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Ureña, C., Fajardo, M., and King, A. 2013. An area-preserving parametrization for spherical rectangles. Computer Graphics Forum 32, 4, 59--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Wachtel, F., Pilleboue, A., Coeurjolly, D., Breeden, K., Singh, G., Cathelin, G., de Goes, F., Desbrun, M., and Ostromoukhov, V. 2014. Fast tile-based adaptive sampling with user-specified Fourier spectra. ACM Trans. on Graphics 33, 4, 56:1--56:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Wieczorek, M. A., and Simons, F. J. 2005. Localized spectral analysis on the sphere. Geophysical Journal International 162, 3, 655--675.Google ScholarGoogle ScholarCross RefCross Ref
  53. Xu, Y., Hu, R., Gotsman, C., and Liu, L. 2012. Blue noise sampling of surfaces. Computers & Graphics 36, 4, 232--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point sampling with general noise spectrum. ACM Transactions on Graphics (TOG) 31, 4, 76. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Variance analysis for Monte Carlo integration

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 34, Issue 4
            August 2015
            1307 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2809654
            Issue’s Table of Contents

            Copyright © 2015 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 27 July 2015
            Published in tog Volume 34, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader