
- 1 T. Bayer, I. Renz, M. Stein, and U. Kressel. Domain and language independent feature extraction for statistical text categorization. In Proc o} the Workshop on Language Engineering for Document Analyais and Recognition, Sussex, United Kingdom, 1996.Google Scholar
- 2 R. Belew. A connectionist approach to conceptual information retrieval. In Proc oy the {nt'l Conference on A r. tificiai Intelligence and Law (ICAIL'87J, Breton, MA, 1987. Google Scholar
Digital Library
- 3 C. M. Bishop, M. Svens#n, and C. K. 1. WiBiams. GTM: A a principled alternative to the self-organizing map. In Proc of the lnt'l Cony on Artificial Neural Network8 ({CANN'96), Bochum, Germany, 1996. Google Scholar
Digital Library
- 4 C. M. Bishop, M. Svens#n, and C. K. 1. Williams. GTM: The generative topographic mapping. Technical Report NCRG/96/015, Aston University, Neural Computing Research Group, http://www.ncrg.aston.ac.uk, Birmingham, United Kingdom, 1996.Google Scholar
- 5 G. A. Carpenter and S. Grossberg. The ART of adaptive pattern recognition by a self-organizing neural network. IEEE Computer, 21(3), 1988. Google Scholar
Digital Library
- 6 M. Cottrell and E. de Bodt. A Kohonen map representation to avoid misleading interpretations, in Proc of the European Symposium on Artificial Neural Networks (ESANN'96), Brugge, Belgium, 1996.Google Scholar
- 7 M. Cottrell and J.-C. Fort. Etude d'un proees. sus d'auto-organisation. Annales de l'lnstitut Henri Poincard, 23(1), 1987.Google Scholar
- 8 M. Cottrell, J.-C. Fort, and G. Pages. Two or three things that we know about the Kohonen algorithm. In Proc of the European Symposium on Artificial Neural Networks (ESANN'94), Bruxelles, Belgium, 1994.Google Scholar
- 9 F. Crestiani. Learning strategies for an adaptive information retrieval system using neural networks, in Proc o! the IEEE lnt'! Con/on Neural Networks (ICNN'93)# San Francisco, California, 1993. Google Scholar
Digital Library
- 10 C. J. Crouch, D. B. Crouch, and K. Nareddy. A conneetionist model for information retrieval based on the vector space model, lnt'l Journal o{ Expert Systems, 7(2), 1994. Google Scholar
Digital Library
- 11 S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Hashman. Indexing by latent semantic analysis. Journal of the American Society }or Information Science, 41(6), 1990.Google Scholar
- 12 B. Fritzke. Growing Cell Structures: A self-organizing network for unsupervised and supervised learning. Neural Networks, 7(9), 1994. Google Scholar
Digital Library
- 13 K. E. Gorlen. NIH class library reference manual. National Institutes of Health, Bethesda, Maryland, 1990.Google Scholar
- 14 K. E. Gor}en, S. Orlow, and P. Plexieo. Abstraction and Object-Oriented Programming in C-i--l-. John Wiley, New York, 1990. Google Scholar
Digital Library
- 15 T. Honkela, S. Kaski, K. Lagus, and T. Kohonen. Newsgroup exploration with WEBSOM method and browsing interface. Technical Report A32, Helsinki University of Technology, Laboratory of Computer and Information Science, http://websom.hut.fi, Espoo, Finland, 1996.Google Scholar
- 16 T. Honkela, V. Pulkki, and T. Kohonen. Contextual relations of words in Grimm tales analyzed by selforganizing maps. In Proc o} the lnt'l Con} on Artificial Neural Networks (ICA NN'95), Paris, France, 1995.Google Scholar
- 17 A. K. Jain and R. D. Dubes. Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs, 1988. Google Scholar
Digital Library
- 18 !. T. Jolliffe. Principal Component Analysis. Springer- Verlag, Berlin, 1986.Google Scholar
Cross Ref
- 19 E. R. Kandel, S. A. Siegelbaum, and J. H. Schwartz. Synaptie transmission. In E. R. Kandel, J. H. Schwartz, and T. M. Jessell, editors, Principles o} Neural Science. Elsevier, New York, 1991.Google Scholar
- 20 S. Keane, V. Ratnaike, and R. Wilkinson. Hierarchical news filtering. In Proc of the Int'l Con} on Practical Aspects of Knowledge Management, Basel, Switzerland, 1996.Google Scholar
- 21 M. K#ihle and D. Merkl. Visualizing similarities in high dimensional input spaces with a growing and splitting neural network. In Proc of the {nt'l Conf on Artificial Neural Networks ({CANN'96), Bochum, Germany, 1996. Google Scholar
Digital Library
- 22 T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43, 1989.Google Scholar
- 23 T. Kohonen. Generalizations of the serf-organizing map. In Proc of the lnt'! Joint Conf on Neural Networks (IJCNN'93), Nagoya, Japan, 1993.Google Scholar
- 24 T. Kohonen. Sell-organizing maps. Springer-Verlag, Berlin, 1995. Google Scholar
Digital Library
- 25 T. Kohonen, J. Hynninen, J. Kangas, and J. Lanksonen. SOM-PAK: The self-organizing map program package, Version 3.1. Helsinki University of Technology, Laboratory of Computer and Information Science, http://nucleus.hut.ti, Espoo, Finland, 1995.Google Scholar
- 26 T. Kohonen, S. Kaski, K. Lagus, and T. Honkela. Very large two-level SOM for the browsing of newsgroups. In Proc of the {at 7 Conf on Artificial Neural Networks (ICA NN'96), Bochum, Germany, 1996. Google Scholar
Digital Library
- 27 M. A. Kraaijveld, J. Mao, and A. K. Jain. A nonlinear projection method based on Kohonen's topology preserving maps. In Proc of the lnt'l Conference on Pattern Recognition (1CPR '92), 1992.Google Scholar
- 28 K. Lagus, T. Honkela, S. Kaski, and T. Kohonen. Selforga#zing maps of document collections: A new approach to interactive exploration. In Proc o.f the lnt'! Conf on Knowledge Discovery and Data Mining (KDD- 96), Portland, OR, 1996.Google Scholar
- 29 X. Lin, D. Soergel, and G. Marchionini. A selforganizing semantic map for information retrieval. In Proc of the A CM SIGIR lnt'l Cony on Research and Development in Information Retrieval (SIG{R'91), Chicago, IL, 1991. Google Scholar
Digital Library
- 30 D. Merkl. SelJ-Organization o} Software Libraries: An Artificial Neural Network Approach. Phi) thesis, institut fiir Angewandte lnformatik mad Informationssysteme, Universit/it Wien, 1994.Google Scholar
- 31 D. Merld. A eonnectionist view on document classification. In Proc o.f the Australasian Database Con/ (ADC'95), Adelaide, SA, 1995.Google Scholar
- 32 D. Merkl. Content-based document classification with highly compressed input data. In Proc o/the lnt'l Conf on Artificial Neural Networks (ICA NN'95), Pads, France, 1995.Google Scholar
- 33 D. Merld. Content-based software classification by selforganization. In Proc of the IEEE lnt'l Cony on Neural Networks ({CNN'95), Perth, WA, 1995.Google Scholar
- 34 D. Merld. The effect of lateral inhibition on learning speed and precision of a self-organizing map. In Proe o} the Australian Con/on Neural Networks, Sydney, NSW, 1995.Google Scholar
- 35 D. Merld. Exploration of document collections with self-organizing maps: A novel approach to similarity representation. In Proc of the European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD'97}, Trondheim, Norway, 1997. Google Scholar
Digital Library
- 36 D. Merkl and A. Rauber. Alternative ways for cluster visualization in self-organizing maps. In Proc of the Workshop on Self.Organizing Maps, Espoo, Finland, 1997.Google Scholar
- 37 D. Merkl and A. Rauber. On the similarity of eagles, hawks, and cows: Visualization of similarity in selforganizing maps. In Proc of the lnt'l Workshop Fuzzy- Neuro-Systems'97, Soest, Germany, 1997.Google Scholar
- 38 D. Merkl, E. Sehweighofer, and W. Winiwarter. CON- CAT: Connotation analysis of thesauri based on the interpretation of context meaning. In Proc of the lnt'l Conference on Database and Expert Systems A pplico. tions (DEXA '9#), Athens, Greece, 1994. Google Scholar
Digital Library
- 39 E. Merlo, I. McAdam, and R. De Mori. Source code informal information analysis using conneetionist models. In Proc of the lnt'l Joint Conference on Artificial Intelligence (IjCAI'93), Chamb#ry, France, 1993.Google Scholar
- 40 R. Miikkulainen. Script recognition with hierarchical feature maps. Connection Science, 2, 1990.Google Scholar
- 41 R. Miikkulainen. Self-organizing process based on lateral inhibition and synaptic resource redistribution. In Proc of the lnt'l Conf on Artificial Neural Networks (ICANN'91), Espoo, Finland, 1991.Google Scholar
- 42 R. Miikkulainen. "iYaee feature map: A model of episodic associative memory. Biological Cybernetics, 66, 1992.Google Scholar
- 43 R. Miikkulainen. Subsymbolic Natural Language Processing: An integrated model of scripts, lexicon, and memory. MIT-Press, Cambridge, MA, 1993. Google Scholar
Digital Library
- 44 B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge, United Kingdom, 1996. Google Scholar
Digital Library
- 45 H. Ritter and T. Kohonen. Self-organizing semantic maps. Biological Cybernetics, 61, 1989.Google Scholar
- 46 D. E. Rose. A S#lmbolic and Connectionist Approach to Legal Information Retrieval Lawrence Erlbaum, Hillsdale, 1994. Google Scholar
Digital Library
- 47 D. E. Rose and R. K. Belew. Legal information retrieval: A hybrid approach. In Proc of the lnt'l Conference on Artificial Intelligence and Law (ICAIL'89), Vancouver, Canada, 1989. Google Scholar
Digital Library
- 48 D. E. Rumelhaxt and D. Zipser. Feature discovery by competitive learning. In D. E. Rumelhart, J. L. Mc- Clelland, and the PDP Research Group, editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. L Foundations. MIT Press, Cambridge, MA, 1986. Google Scholar
Digital Library
- 49 G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading, MA, 1989. Google Scholar
Digital Library
- 50 E. Schweighofer, W. Winiwarter, and D. Merld. Information filtering: The computation of similarities in large corpora of legal text. In Proc of the {nt'l Conf on Artificial Intelligence and Law ({CA{L '95), College Park, MD, 1995. Google Scholar
Digital Library
- 51 K. Swingler. Applying Neural Networks: A Practical Guide. Academic Press, London, 1996.Google Scholar
- 52 H. R. Turtle and W. B. Croft. A comparison of text retrieval models. Computer Journal, 35(3), 1992. Google Scholar
Digital Library
- 53 A. Ultsch. Self-organizing neural networks for visualization and classification. In O. Opitz, B. Lausen, and R. Klar, editors, Information and Classification- Concepts, Methods, and Applications. Springer-Verlag, Berlin, 1993.Google Scholar
- 54 R. Wilkinson and P. Hingston. Incorporating the vector space model in a neural network used for information retrieval. In Proc of the A CM SIGIR lnt7 Conf on Research and Development in Information Retrieval (SIGIR'91), Chicago, IL, 1991.Google Scholar
- 55 P. Willet. Reeend trends in hierarchic document clustering: A critical review. Information Processing #1 Management, 24, 1988. Google Scholar
Digital Library
Index Terms
- Exploration of text collections with hierarchical feature maps
Recommendations
Interactive Exploration of Data Traffic with Hierarchical Network Maps
Network communication has become indispensable in business, education, and government. With the pervasive role of the Internet as a means of sharing information across networks, its misuse for destructive purposes, such as spreading malicious code, ...
Self-organizing maps of document collections: a new approach to interactive exploration
KDD'96: Proceedings of the Second International Conference on Knowledge Discovery and Data MiningPowerful methods for interactive exploration and search from collections of free-form textual documents are needed to manage the ever-increasing flood of digital information. In this article we present a method, WEBSOM, for automatic organization of ...
Data exploration with paired hierarchical visualizations: initial designs of PairTrees
dg.o '03: Proceedings of the 2003 annual national conference on Digital government researchPaired hierarchical visualizations (PairTrees) integrate treemaps, node-link diagrams, choropleth maps and other information visualization techniques to support exploration of hierarchical data sets at multiple levels of abstraction (Kules, Shneiderman ...






Comments