skip to main content
research-article

Logic of Intuitionistic Interactive Proofs (Formal Theory of Perfect Knowledge Transfer)

Published:17 September 2015Publication History
Skip Abstract Section

Abstract

We produce a decidable super-intuitionistic normal modal logic of internalised intuitionistic (and thus disjunctive and monotonic) interactive proofs (LIiP) from an existing classical counterpart of classical monotonic non-disjunctive interactive proofs (LiP). Intuitionistic interactive proofs effect a durable epistemic impact in the possibly adversarial communication medium CM (which is imagined as a distinguished agent) and only in that, that consists in the permanent induction of the perfect and thus disjunctive knowledge of their proof goal by means of CM's knowledge of the proof: If CM knew my proof then CM would persistently and also disjunctively know that my proof goal is true. So intuitionistic interactive proofs effect a lasting transfer of disjunctive propositional knowledge (disjunctively knowable facts) in the communication medium of multi-agent distributed systems via the transmission of certain individual knowledge (knowable intuitionistic proofs). Our (necessarily) CM-centred notion of proof is also a disjunctive explicit refinement of KD45-belief, and yields also such a refinement of standard S5-knowledge. Monotonicity but not communality is a commonality of LiP, LIiP, and their internalised notions of proof. As a side-effect, we offer a short internalised proof of the Disjunction Property of Intuitionistic Logic (originally proved by Gödel).

References

  1. R. Anderson. 2008. Security Engineering: A Guide to Building Dependable Distributed Systems (2nd ed.). Wiley, Hoboken, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. C. Areces and B. Ten Cate. 2007. Hybrid Logics. In Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol. 3, P. Blackburn, J. van Benthem, and F. Wolters (Eds.). Elsevier, 821--868.Google ScholarGoogle Scholar
  3. S. Artemov. 2008. The logic of justifications. The Review of Symbolic Logic 1, 4.Google ScholarGoogle ScholarCross RefCross Ref
  4. S. Artemov and R. Iemhoff. 2007. The basic intuitionistic logic of proofs. The Journal of Symbolic Logic 72, 2.Google ScholarGoogle ScholarCross RefCross Ref
  5. A. Baskar, R. Ramanujam, and S. Suresh. 2010. A DEXPTIME-complete Dolev-Yao theory with distributive encryption. In Proceedings of MFCS. LNCS, vol. 6281. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. Blackburn and J. van Benthem. 2007. Modal Logic: A Semantic Perspective. In Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol. 3, P. Blackburn, J. van Benthem, and F. Wolters (Eds.). Elsevier, 1--84.Google ScholarGoogle Scholar
  7. P. Blackburn, J. van Benthem, and F. Wolter, Eds. 2007. Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3. Elsevier. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. T. Braüner and S. Ghilardi. 2007. Chapter First-Order Modal Logic. In Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol. 3, P. Blackburn, J. van Benthem, and F. Wolters (Eds.). Elsevier, 549--620.Google ScholarGoogle Scholar
  9. V. de Paiva and E. Ritter. 2011. Basic Constructive Modality. In Logic without Frontiers: Festschrift for Walter Alexandre Carnielli on the occasion of his 60th birthday, Jean-Yves Beziau and Marcelo Esteban Coniglio (Eds.). Tribute Series, vol. 17. College Publications, London.Google ScholarGoogle Scholar
  10. K. Došen. 1984. Intuitionistic double negation as a necessity operator. Publications de l'Institut Mathématique (Beograd) 35, 49.Google ScholarGoogle Scholar
  11. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. 1995. Reasoning about Knowledge. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Feferman. 1964 (1989). The Number Systems: Foundations of Algebra and Analysis (2nd ed.). AMS Chelsea Publishing. Reprinted by the American Mathematical Society, 2003.Google ScholarGoogle Scholar
  13. N. Ferguson, B. Schneier, and T. Kohno. 2010. Cryptography Engineering: Design Principles and Practical Applications. Wiley, Hoboken, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. G. Fischer Servi. 1984. Axiomatisations for some intuitionistic modal logics. Rendiconti del seminario matematico del Politecnico di Torino 42, 3.Google ScholarGoogle Scholar
  15. M. Fitting. 2007. Modal Proof Theory. In Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol. 3, P. Blackburn, J. van Benthem, and F. Wolters (Eds.). Elsevier, 85--138.Google ScholarGoogle Scholar
  16. D. Gabbay, Ed. 1995. What Is a Logical System? Number 4 in Studies in Logic and Computation. Oxford University Press, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Gollmann. 2011. Computer Security (3rd ed). Wiley, Hoboken, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. V. Goranko and M. Otto. 2007. Model Theory of Modal Logic. In Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol. 3, P. Blackburn, J. van Benthem, and F. Wolters (Eds.). Elsevier, 249--329.Google ScholarGoogle Scholar
  19. V. Hendricks and O. Roy, Eds. 2010. Epistemic Logic: 5 Questions. Automatic Press, New York.Google ScholarGoogle Scholar
  20. J. Hindley and J. Seldin. 2008. Lambda-Calculus and Combinators (2nd ed.). Cambridge University Press, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. Hrubeš. 2007. A lower bound for intuitionistic logic. Annals of Pure and Applied Logic 146.Google ScholarGoogle Scholar
  22. E. Jeřábek. 2008. Independent bases of admissible rules. Logic Journal of the Interest Group in Pure and Applied Logic 16, 3.Google ScholarGoogle Scholar
  23. S. Kramer. 2012a. A logic of interactive proofs (formal theory of knowledge transfer). Technical Report 1201.3667, arXiv. http://arxiv.org/abs/1201.3667.Google ScholarGoogle Scholar
  24. S. Kramer. 2012b. Logic of negation-complete interactive proofs (formal theory of epistemic deciders). Technical Report 1208.5913, arXiv. Retrieved August 30, 2015 from http://arxiv.org/abs/1208.5913.Google ScholarGoogle Scholar
  25. S. Kramer. 2012c. Logic of non-monotonic interactive proofs (formal theory of temporary knowledge transfer). Technical Report 1208.1842, arXiv. Retrieved August 30, 2015 from http://arxiv.org/abs/1208.1842.Google ScholarGoogle Scholar
  26. S. Kramer. 2013a. Logic of intuitionistic interactive proofs (formal theory of disjunctive knowledge transfer). Short paper presented at the Congress on Logic and Philosophy of Science, Ghent.Google ScholarGoogle Scholar
  27. S. Kramer. 2013b. Logic of intuitionistic interactive proofs (formal theory of perfect knowledge transfer). Technical Report 1309.1328, arXiv. Retrieved August 30, 2015 from http://arxiv.org/abs/1309.1328.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Kramer. 2013c. Logic of non-monotonic interactive proofs. In Proceedings of ICLA. Lecture Notes in Computer Science, vol. 7750. Springer.Google ScholarGoogle Scholar
  29. S. Kramer. 2014. Logic of negation-complete interactive proofs (formal theory of epistemic deciders). In Proceedings of IMLA. Electronic Notes in Theoretical Computer Science, vol. 300. Elsevier. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Kripke. 1965. Semantical Analysis of Intuitionistic Logic I. In Formal Systems and Recursive Functions. Studies in Logic and the Foundations of Mathematics, vol. 40. Elsevier.Google ScholarGoogle Scholar
  31. J.-J. Meyer and F. Veltman. 2007. Handbook of Modal Logic, Chapter Intelligent Agents and Common Sense Reasoning. In Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol. 3, P. Blackburn, J. van Benthem, and F. Wolters (Eds.). Elsevier, 991--1029.Google ScholarGoogle Scholar
  32. J. Moschovakis. 2010. Intuitionistic logic. In The Stanford Encyclopedia of Philosophy, Summer 2010 ed., E. N. Zalta (Ed.).Google ScholarGoogle Scholar
  33. Y. Moschovakis. 2006. Notes on Set Theory (2nd ed.). Springer.Google ScholarGoogle Scholar
  34. G. Plotkin and C. Stirling. 1986. A framework for intuitionistic modal logics. In Proceedings of the Conference on Theoretical Aspects of Rationality and Knowledge. Morgan Kaufmann Publishers Inc., Burlington, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. K. Pouliasis and G. Primiero. 2014. J-Calc: A typed lambda calculus for Intuitionistic Justification Logic. In Proceedings of IMLA. Electronic Notes in Theoretical Computer Science, vol. 300. Elsevier. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. K. Ranalter. 2010. Embedding constructive K into intuitionistic K. Electronic Notes in Theoretical Computer Science 262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Simpson. 1994. The proof-theory and semantics of intuitionistic modal logic. Ph.D. thesis, University of Edinburgh, Edinburgh, UK.Google ScholarGoogle Scholar
  38. R. Statman. 1979. Intuitionistic propositional logic is polynomial-space complete. Theoretical Computer Science 9.Google ScholarGoogle Scholar
  39. G. Steren and E. Bonelli. 2014. Intuitionistic hypothetical logic of proofs. In Proceedings of IMLA. Electronic Notes in Theoretical Computer Science, vol. 300. Elsevier. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. P. Taylor. 1999. Practical Foundations of Mathematics. Cambridge University Press, New York, NY.Google ScholarGoogle Scholar
  41. A. Tiu, R. Goré, and J. Dawson. 2010. A proof theoretic analysis of intruder theories. Logical Methods in Computer Science 6, 3.Google ScholarGoogle ScholarCross RefCross Ref
  42. J. van Benthem. 1997. Modal Logic as a Theory of Information. In Logic and Reality: Essays on the Legacy of Arthur Prior, B. J. Copeland (Ed.). Clarendon Press, Oxford, UK.Google ScholarGoogle Scholar
  43. J. van Benthem. 2009. The information in intuitionistic logic. Synthese 167.Google ScholarGoogle Scholar
  44. D. Wijesekera. 1990. Constructive modal logic I. Annals of Pure and Applied Logic 50.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Logic of Intuitionistic Interactive Proofs (Formal Theory of Perfect Knowledge Transfer)

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader