skip to main content
research-article
Open Access

Blue noise sampling using an SPH-based method

Published:02 November 2015Publication History
Skip Abstract Section

Abstract

We propose a novel algorithm for blue noise sampling inspired by the Smoothed Particle Hydrodynamics (SPH) method. SPH is a well-known method in fluid simulation -- it computes particle distributions to minimize the internal pressure variance. We found that this results in sample points (i.e., particles) with a high quality blue-noise spectrum. Inspired by this, we tailor the SPH method for blue noise sampling. Our method achieves fast sampling in general dimensions for both surfaces and volumes. By varying a single parameter our method can generate a variety of blue noise samples with different distribution properties, ranging from Lloyd's relaxation to Capacity Constrained Voronoi Tessellations (CCVT). Our method is fast and supports adaptive sampling and multi-class sampling. We have also performed experimental studies of the SPH kernel and its influence on the distribution properties of samples. We demonstrate with examples that our method can generate a variety of controllable blue noise sample patterns, suitable for applications such as image stippling and re-meshing.

References

  1. Adami, S., Hu, X. Y., and Adams, N. A. 2013. A transport-velocity formulation for smoothed particle hydrodynamics. Journal of Computational Physics 241 (May), 292--307. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3 (July), 48:1--48:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., and Teschner, M. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31, 4 (July), 62:1--62:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Akinci, N., Akinci, G., and Teschner, M. 2013. Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. 32, 6 (Nov.), 182:1--182:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3 (July), 617--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd's method. ACM Trans. Graph. 28, 3 (July), 86:1--86:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G. 1999. The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics 5, 4 (Oct.), 349--359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29, 6 (Dec.), 166:1--166:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen, Z., Yuan, Z., Choi, Y.-K., Liu, L., and Wang, W. 2012. Variational blue noise sampling. IEEE Transactions on Visualization and Computer Graphics 18, 10 (Oct.), 1784--1796. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chen, J., Ge, X., Wei, L.-Y., Wang, B., Wang, Y., Wang, H., Fei, Y., Qian, K.-L., Yong, J.-H., and Wang, W. 2013. Bilateral blue noise sampling. ACM Trans. Graph. 32, 6 (Nov.), 216:1--216:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1 (Jan.), 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6 (Nov.), 171:1--171:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. De Goes, F., Wallez, C., Huang, J., Pavlov, D., and Desbrun, M. 2015. Power particles: An incompressible fluid solver based on power diagrams. ACM Trans. Graph. 34, 4 (July), 50:1--50:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. SIGGRAPH Comput. Graph. 19, 3 (July), 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Du, Q., and Emelianenko, M. 2006. Acceleration schemes for computing centroidal Voronoi tessellations. Numerical Linear Algebra with Applications 13, 2--3, 173--192.Google ScholarGoogle ScholarCross RefCross Ref
  16. Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. 30, 4 (July), 48:1--48:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gingold, R. A., and Monaghan, J. J. 1977. Smoothed particle hydrodynamics-theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181, 375--389.Google ScholarGoogle ScholarCross RefCross Ref
  18. Girault, V., and Raviart, P. 1986. Finite element methods for Navier-Stokes equations: theory and algorithms. Springer series in computational mathematics. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Guo, J., Yan, D.-M., Jia, X., and Zhang, X. 2015. Efficient maximal Poisson-disk sampling and remeshing on surfaces. Computers and Graphics 46, 72--79. Shape Modeling International 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Harada, T., Tanaka, M., Koshizuka, S., and Kawaguchi, Y. 2007. Real-time coupling of fluids and rigid bodies. APCOM in conjunction with EPMESC XI, 3--6.Google ScholarGoogle Scholar
  21. Heck, D., Schlömer, T., and Deussen, O. 2013. Blue noise sampling with controlled aliasing. ACM Trans. Graph. 32, 3 (July), 25:1--25:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hérault, A., Bilotta, G., and Dalrymple, R. 2010. SPH on GPU with CUDA. Journal of Hydraulic Research 48, 1, 74--79.Google ScholarGoogle ScholarCross RefCross Ref
  23. Hoetzlein, R. C. 2014. Fast fixed-radius nearest neighbors: Interactive million--particle fluids. In GPU Technology Conference.Google ScholarGoogle Scholar
  24. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., and Teschner, M. 2014. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (Mar.), 426--435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. 2014. SPH fluids in computer graphics. In Eurographics 2014 - State of the Art Reports.Google ScholarGoogle Scholar
  26. Li, H., Nehab, D., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Fast capacity constrained voronoi tessellation. I3D '10, 13:1--13:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lloyd, S. 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28, 2 (Sept.), 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Macklin, M., and Müller, M. 2013. Position based fluids. ACM Trans. Graph. 32, 4 (July), 104:1--104:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. McCool, M., and Fiume, E. 1992. Hierarchical Poisson disk sampling distributions. In Proceedings of the Conference on Graphics Interface '92, 94--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. SIGGRAPH Comput. Graph. 21, 4 (Aug.), 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Monaghan, J. J. 1994. Simulating free surface flows with SPH. J. Comput. Phys. 110, 2 (Feb.), 399--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Monaghan, J. J. 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics 68, 8, 1703.Google ScholarGoogle ScholarCross RefCross Ref
  33. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. SCA '03, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Öztireli, A. C., and Gross, M. 2012. Analysis and synthesis of point distributions based on pair correlation. ACM Trans. Graph. 31, 6 (Nov.), 170:1--170:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Schechter, H., and Bridson, R. 2012. Ghost SPH for animating water. ACM Trans. Graph. 31, 4 (July), 61:1--61:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible SPH. ACM Trans. Graph. 28, 3 (July), 40:1--40:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Subr, K., and Kautz, J. 2013. Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration. ACM Trans. Graph. 32, 4 (July), 128:1--128:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ulichney, R. 1987. Digital Halftoning. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wachtel, F., Pilleboue, A., Coeurjolly, D., Breeden, K., Singh, G., Cathelin, G., de Goes, F., Desbrun, M., and Ostromoukhov, V. 2014. Fast tile-based adaptive sampling with user-specified Fourier spectra. ACM Trans. Graph. 33, 4 (July), 56:1--56:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wei, L.-Y., and Wang, R. 2011. Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30, 4 (July), 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wei, L.-Y. 2008. Parallel poisson disk sampling. ACM Trans. Graph. 27, 3 (Aug.), 20:1--20:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wei, L.-Y. 2010. Multi-class blue noise sampling. ACM Trans. Graph. 29, 4 (July), 79:1--79:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Xu, Y., Liu, L., Gotsman, C., and Gortler, S. J. 2011. Capacity-constrained delaunay triangulation for point distributions. Computers and Graphics 35, 3, 510--516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Xu, Y., Hu, R., Gotsman, C., and Liu, L. 2012. Blue noise sampling of surfaces. Computers and Graphics 36, 4, 232--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point sampling with general noise spectrum. ACM Trans. Graph. 31, 4 (July), 76:1--76:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Blue noise sampling using an SPH-based method

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 34, Issue 6
      November 2015
      944 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2816795
      Issue’s Table of Contents

      Copyright © 2015 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 2 November 2015
      Published in tog Volume 34, Issue 6

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader