skip to main content
research-article

Understanding Programming Expertise: An Empirical Study of Phasic Brain Wave Changes

Authors Info & Claims
Published:31 December 2015Publication History
Skip Abstract Section

Abstract

Recent decades have seen a resurgence of interest in electroencephalography (EEG), as neuroscience develops new models of cognition and refines old ones, associating them with detectable indicators of brain activity. This article presents a more direct measure of programmer expertise, derived from noninvasive observation of the brain’s electrical activity. This article provides a foundational approach for investigating the role of expertise in programming language comprehension, showing that this electrical activity in the brain can indicate (1) prior programming experience by class level (current state of progression through an undergraduate computer science program), and (2) self-reported experience levels.

References

  1. B. Adelson. 1984. When novices surpass experts: the difficulty of a task may increase with expertise. J. Exp. Psychol. 10, 3 (1984), 483--495.Google ScholarGoogle Scholar
  2. E. W. Anderson, K. C. Potter, L. E. Matzen, J. F. Shepherd, G. a. Preston, and C. T. Silva. 2011. A user study of visualization effectiveness using EEG and cognitive load. Comput. Graph. Forum 30, 3 (June 2011), 791--800. DOI:http://dx.doi.org/10.1111/j.1467-8659.2011.01928.x Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Pavlo Antonenko, Fred Paas, Roland Grabner, and Tamara van Gog. 2010. Using electroencephalography to measure cognitive load. Edu. Psychol. Rev 22, 4 (2010), 425--438.Google ScholarGoogle Scholar
  4. Erik Arisholm, Hans Gallis, Tore Dyba, and Dag Sjoberg. 2007. Evaluating pair programming with respect to system complexity and programmer expertise. IEEE Tran. Softw. Eng. 33, 2 (February 2007), 65--86. DOI:http://dx.doi.org/10.1109/TSE.2007.17 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Alan D. Baddeley. 1992. Working memory: the interface between memory and cognition. J. Cogn. Neurosci. 4, 3 (January 1992), 281--8. DOI:http://dx.doi.org/10.1162/jocn.1992.4.3.281 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Alan D. Baddeley. 2001. Is working memory still working? Am. Psychologist 56, 11 (2001), 851.Google ScholarGoogle ScholarCross RefCross Ref
  7. Alan D. Baddeley and Graham Hitch. 1974. Working memory. Psychol. Learn. Motivation 8 (1974), 47--89.Google ScholarGoogle ScholarCross RefCross Ref
  8. Stuart N. Baker. 2007. Oscillatory interactions between sensorimotor cortex and the periphery. Current Opinion Neurobiol. 17, 6 (2007), 649--655.Google ScholarGoogle ScholarCross RefCross Ref
  9. E. Basar. 1999. Brain Function and Oscillations. Integrative Brain Functions. Neurophysiology and Cognitive Processes, Vol. 2. Springer, Berlin.Google ScholarGoogle Scholar
  10. Hans Berger. 1929. Über das elektroenkephalogramm des menschen. Archiv für Psychiatrie und Nervenkrankheiten 87 (1929), 527--570.Google ScholarGoogle ScholarCross RefCross Ref
  11. Chris Berka, Daniel J. Levendowski, Caitlin K. Ramsey, Gene Davis, Michelle N. Lumicao, Kay Stanney, Leah Reeves, Susan H. Regli, Patrice D. Tremoulet, and Kathleen Stibler. 2005. Evaluation of an EEG workload model in an Aegis simulation environment. In Biomonitoring for Physiological and Cognitive Performance During Military Operations, John A. Caldwell and Nancy Jo Wesensten (Eds.), Vol. 5797. 90--99. DOI:http://dx.doi.org/10.1117/12.598555Google ScholarGoogle Scholar
  12. C. F. Bertholf and J. Scholtz. 1986. Program comprehension of literate programs by novice programmers. In Empirical Studies of Programmers: 5th Workshop. Ablex, Norwood, NJ, 28--47.Google ScholarGoogle Scholar
  13. Richard Bornat, Saeed Dehnadi, and Simon. 2008. Mental models, consistency and programming aptitude. In Proceedings of the 7th Conference on Australasian Computing Education - Volume 78 (ACE’08). Australian Computer Society, Inc., Darlinghurst, Australia, 53--61. http://dl.acm.org/citation.cfm?id=1379249.1379253 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Roland Brunken, Jan L. Plass, and Detlev Leutner. 2003. Direct measurement of cognitive load in multimedia learning. Educ. Psychologist 38, 1 (2003), 53--61.Google ScholarGoogle ScholarCross RefCross Ref
  15. Roberto Cabeza and Lars Nyberg. 2000. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1 (2000), 1--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. William G. Chase and Herbert A. Simon. 1973. Perception in chess. Cogn. Psychol. 4, 1 (1973), 55--81.Google ScholarGoogle ScholarCross RefCross Ref
  17. Michelene T. H. Chi, Paul J. Feltovich, and Robert Glaser. 1981. Categorization and representation of physics problems by experts and novices*. Cogn. Sci. 5, 2 (1981), 121--152.Google ScholarGoogle ScholarCross RefCross Ref
  18. Andrew R. A. Conway, Nelson Cowan, Michael F. Bunting, David J. Therriault, and Scott R. B. Minkoff. 2002. A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence 30, 2 (2002), 163--183.Google ScholarGoogle ScholarCross RefCross Ref
  19. Nicholas R. Cooper, Adrian P. Burgess, Rodney J. Croft, and John H Gruzelier. 2006. Investigating evoked and induced electroencephalogram activity in task-related alpha power increases during an internally directed attention task. Neuroreport 17, 2 (February 2006), 205--208.Google ScholarGoogle ScholarCross RefCross Ref
  20. Joseph T. Coyne, Carryl Baldwin, Anna Cole, Ciara Sibley, and Daniel M. Roberts. 2009. Applying real time physiological measures of cognitive load to improve training. In Proceedings of the 5th International Conference on Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience: Held As Part of HCI International 2009 (FAC’09). Springer, Berlin, 469--478. DOI:http://dx.doi.org/10.1007/ 978-3-642-02812-0_55 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Simon P. Davies. 1990. The nature and development of programming plans. Int. J. Man-Mach. Stud. 32, 4 (1990), 461--481. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Françoise Détienne and Frank Bott. 2002. Software Design--Cognitive Aspects. Springer, London. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Adrianus de Groot. 1965. Thought and Choice in Chess. Mouton, The Hague.Google ScholarGoogle Scholar
  24. Dennis Egan and Barry Schwartz. 1979. Chunking in recall of symbolic drawings. Memory Cogn. 7, 2 (1979), 149--158.Google ScholarGoogle ScholarCross RefCross Ref
  25. Randall W. Engle, Stephen W. Tuholski, James E. Laughlin, and Andrew R. A. Conway. 1999. Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. Journal of Experimental Psychology: General 128, 3 (1999), 309--331.Google ScholarGoogle ScholarCross RefCross Ref
  26. K. Anders Ericsson, Ralf Th. Krampe, and Clemens Tesch-romer. 1993. The role of deliberate practice in the acquisition of expert performance. Psychological Rev. (1993), 363--406.Google ScholarGoogle Scholar
  27. Thomas Fritz, Andrew Begel, Sebastian C. Müller, Serap Yigit-Elliott, and Manuela Züger. 2014. Using psycho-physiological measures to assess task difficulty in software development. In Proceedings of the 36th International Conference on Software Engineering (ICSE 2014). ACM, New York, NY, 402--413. DOI:http://dx.doi.org/10.1145/2568225.2568266 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Laurent George, Maud Marchal, Loeiz Glondu, and L. Anatole. 2012. Combining brain-computer interfaces and haptics : detecting mental workload to adapt haptic assistance. EuroHaptics (2012), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Alan Gevins, Michael E. Smith, Linda McEvoy, and Daphne Yu. 1997. High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex 7, 4 (1997), 374--385.Google ScholarGoogle ScholarCross RefCross Ref
  30. D. J. Gilmore and T. R. G. Green. 1988. Programming plans and programming expertise. Quart. J. of Exp. Psychol. 40, 3 (1988), 423--442.Google ScholarGoogle ScholarCross RefCross Ref
  31. F. Gobet. 1998. Expert memory: A comparison of four theories. Cognition 66, 2 (May 1998), 115--152.Google ScholarGoogle ScholarCross RefCross Ref
  32. R. H. Grabner, A. C. Neubauer, and E. Stern. 2006. Superior performance and neural efficiency: The impact of intelligence and expertise. Brain Res. Bull. 69, 4 (April 2006), 422--439.Google ScholarGoogle ScholarCross RefCross Ref
  33. R. H. Grabner, E. Stern, and A. C. Neubauer. 2003. When intelligence loses its impact: Neural efficiency during reasoning in a familiar area. Int. J. Psychophysiol. 49, 2 (Aug 2003), 89--98.Google ScholarGoogle ScholarCross RefCross Ref
  34. David Grimes, Desney S. Tan, Scott E. Hudson, Pradeep Shenoy, and Rajesh P. N. Rao. 2008. Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’08). ACM, New York, NY, 835--844. DOI:http://dx.doi.org/10.1145/1357054.1357187 Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Michael E. Hansen, Andrew Lumsdaine, and Robert L. Goldstone. 2012. Cognitive architectures: A way forward for the psychology of programming. In Proceedings of the ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software. ACM, 27--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sandra G. Hart. 2006. NASA-task load index (NASA-TLX); 20 years later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 904--908. DOI:http://dx.doi.org/10.1037/e577632012-009Google ScholarGoogle ScholarCross RefCross Ref
  37. B. D. Hatfield, A. J. Haufler, T. M. Hung, and T. W. Spalding. 2004. Electroencephalographic studies of skilled psychomotor performance. J. Clin. Neurophysiol. 21, 3 (2004), 144--156.Google ScholarGoogle ScholarCross RefCross Ref
  38. J. Allan Hobson and Edward F. Pace-Schott. 2002. The cognitive neuroscience of sleep: Neuronal systems, consciousness and learning. Nat. Rev. Neurosci. 3, 9 (2002), 679--693.Google ScholarGoogle ScholarCross RefCross Ref
  39. Michael Hoppe and Stefan Hanenberg. 2013. Do developers benefit from generic types?: An empirical comparison of generic and raw types in java. SIGPLAN Not. 48, 10 (October 2013), 457--474. DOI:http://dx.doi.org/10.1145/2544173.2509528 Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ole Jensen, Jack Gelfand, John Kounios, and John E. Lisman. 2002. Oscillations in the alpha band (9--12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex 12, 8 (August 2002), 877--882. DOI:http://dx.doi.org/10.1093/cercor/12.8.877Google ScholarGoogle ScholarCross RefCross Ref
  41. Lloyd Kaufman, Barry Schwartz, Carlo Salustri, and Samuel J. Williamson. 1990. Modulation of spontaneous brain activity during mental imagery. J. Cogn. Neurosci. 2, 2 (January 1990), 124--132. DOI:http://dx.doi.org/10.1162/jocn.1990.2.2.124 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wolfgang Klimesch. 1996. Memory processes, brain oscillations and EEG synchronization. Int. J. Psychophysiol. 24, 1--2 (November 1996), 61--100.Google ScholarGoogle ScholarCross RefCross Ref
  43. Wolfgang Klimesch. 1999. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 2--3 (April 1999), 169--95.Google ScholarGoogle ScholarCross RefCross Ref
  44. Wolfgang Klimesch, Paul Sauseng, and Christian Gerloff. 2003. Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur. J. Neurosci. 17, 5 (March 2003), 1129--1133.Google ScholarGoogle ScholarCross RefCross Ref
  45. Wolfgang Klimesch, Paul Sauseng, and Simon Hanslmayr. 2007. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res. Rev. 53, 1 (January 2007), 63--88. DOI:http://dx.doi.org/10.1016/ j.brainresrev.2006.06.003Google ScholarGoogle ScholarCross RefCross Ref
  46. Wolfgang Klimesch, Bärbel Schack, and Paul Sauseng. 2005. The functional significance of theta and upper alpha oscillations. Exp. Psychol. 52, 2 (2005), 99--108.Google ScholarGoogle ScholarCross RefCross Ref
  47. Jeff Klingner, Barbara Tversky, and Pat Hanrahan. 2011. Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks. Psychophysiology 48, 3 (March 2011), 323--32. DOI:http://dx.doi.org/10.1111/j.1469-8986.2010.01069.xGoogle ScholarGoogle ScholarCross RefCross Ref
  48. Andrew Jensen Ko and Bob Uttl. 2003. Individual differences in program comprehension strategies in unfamiliar programming systems. In Proceedings of the 11th IEEE International Workshop on Program Comprehension. IEEE, 2003, 175--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Kyle E. Mathewson, Chandramallika Basak, Edward L. Maclin, Kathy A. Low, Walter R. Boot, Arthur F. Kramer, Monica Fabiani, and Gabriele Gratton. 2012. Different slopes for different folks: Alpha and delta EEG power predict subsequent video game learning rate and improvements in cognitive control tasks. Psychophysiology 49, 12 (December 2012), 1558--1570. DOI:http://dx.doi.org/10.1111/ j.1469-8986.2012.01474.xGoogle ScholarGoogle ScholarCross RefCross Ref
  50. Clemens Mayer, Stefan Hanenberg, Romain Robbes, Éric Tanter, and Andreas Stefik. 2012. An empirical study of the influence of static type systems on the usability of undocumented software. SIGPLAN Not. 47, 10 (October 2012), 683--702. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Anneliese von Mayrhouser and A. Marie Vans. 1994. Comprehension processes during large scale maintenance. In ICSE’94: Proceedings of the 16th International Conference on Software Engineering. IEEE Computer Society Press, Los Alamitos, CA, 39--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Anneliese von Mayrhouser and A. Marie Vans. 1996. Identification of dynamic comprehension processes during large scale maintenance. IEEE Trans. Softw. Eng. 22, 6 (1996), 424--437. DOI:http://dx.doi. org/10.1109/32.508315 Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Anneliese von Mayrhouser and A. Marie Vans. 1997. Program understanding behavior during debugging of large scale software. In ESP’97: Papers Presented at the 7th Workshop on Empirical Studies of Programmers. ACM Press, New York, NY, 157--179. DOI:http://dx.doi.org/10.1145/266399.266414 Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. George A. Miller. 1956. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 63, 2 (1956), 81--97.Google ScholarGoogle ScholarCross RefCross Ref
  55. Marvin Minsky. 1974. A framework for representing knowledge. (June 1974). MIT-AI Laboratory Memo 306, Massachusetts Institute of Technology Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Takao Nakagawa, Yasutaka Kamei, Hidetake Uwano, Akito Monden, Kenichi Matsumoto, and Daniel M. German. 2014. Quantifying programmers’ mental workload during program comprehension based on cerebral blood flow measurement: A controlled experiment. In Companion Proceedings of the 36th International Conference on Software Engineering (ICSE Companion 2014). ACM, New York, NY, 448--451. DOI:http://dx.doi.org/10.1145/2591062.2591098 Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Aljoscha C. Neubauer and Andreas Fink. 2003. Fluid intelligence and neural efficiency: effects of task complexity and sex. Personality and Individual Differences 35, 4 (2003), 811--827.Google ScholarGoogle ScholarCross RefCross Ref
  58. Fred G. Paas. 1992. Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive-load approach. J. Educ. Psychol. 84, 4 (1992), 429--434.Google ScholarGoogle ScholarCross RefCross Ref
  59. Chris Parnin. 2011. Subvocalization—toward hearing the inner thoughts of developers. In Proceedings of the 2011 IEEE 19th International Conference on Program Comprehension (ICPC’11). IEEE Computer Society, Washington, DC, 197--200. DOI:http://dx.doi.org/10.1109/ICPC.2011.49 Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Nancy Pennington. 1987a. Comprehension strategies in programming. In Empirical Studies of Programmers: Second Workshop, Gary M. Olson, Sylvia Sheppard, Elliot Soloway, and Ben Shneiderman (Eds.). Greenwood Publishing Group, Inc., Westport, CT, 100--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Nancy Pennington. 1987b. Stimulus structures and mental representations in expert comprehension of computer programs. Cogn. Psychol. 19 (1987), 295--341.Google ScholarGoogle ScholarCross RefCross Ref
  62. G. Pfurtscheller and A. Aranibar. 1977. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr. Clin. Neurophysiol. 42, 6 (June 1977), 817--826.Google ScholarGoogle ScholarCross RefCross Ref
  63. G. Pfurtscheller, C. Neuper, and W. Mohl. 1994. Event-related desynchronization (ERD) during visual processing. Int. J. Psychophysiol. 16, 2--3 (May 1994), 147--153.Google ScholarGoogle ScholarCross RefCross Ref
  64. Vennila Ramalingam and Susan Wiedenbeck. 1997. An empirical study of novice program comprehension in the imperative and object-oriented styles. In Presented at the 7th Workshop on Empirical Studies of Programmers. ACM, 124--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. W. J. Ray and H. W. Cole. 1985. EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 228, 4700 (May 1985), 750--752.Google ScholarGoogle ScholarCross RefCross Ref
  66. Judith S. Reitman. 1976. Skilled perception in GO: Deducing memory structures from interresponse times. Cogn. Psychol. 8, 3(1976), 336--356.Google ScholarGoogle ScholarCross RefCross Ref
  67. Tonia A. Rihs, Christoph M. Michel, and Gregor Thut. 2007. Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization. Eur. J. Neurosci. 25, 2 (January 2007), 603--610. DOI:http://dx.doi.org/10.1111/j.1460-9568.2007.05278.xGoogle ScholarGoogle ScholarCross RefCross Ref
  68. Robert S. Rist. 1986. Plans in programming: Definition, demonstration, and development. In Empirical Studies of Programmers. Ablex, Norwood, NJ, 28--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. B. Schack, W. Klimesch, and P. Sauseng. 2005. Phase synchronization between theta and upper alpha oscillations in a working memory task. Int. J. Psychophysiol. 57, 2 (2005), 105--114.Google ScholarGoogle ScholarCross RefCross Ref
  70. Yu Shi, Natalie Ruiz, Ronnie Taib, Eric Choi, and Fang Chen. 2007. Galvanic skin response (GSR) as an index of cognitive load. In CHI’07 Extended Abstracts on Human Factors in Computing Systems - CHI’07. ACM Press, New York, NY, 2651. DOI:http://dx.doi.org/10.1145/1240866.1241057 Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Richard M. Shiffrin and Walter Schneider. 1977. Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychol. Rev. 84, 2 (1977), 127--190.Google ScholarGoogle ScholarCross RefCross Ref
  72. Janet Siegmund, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanenberg. 2013. Measuring and modeling programming experience. Empirical Softw. Eng. 9, 5 (December 2013), 1299--1334. DOI:http://dx.doi.org/10.1007/s10664-013-9286-4 Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja Bethmann, Thomas Leich, Gunter Saake, and André Brechmann. 2014. Understanding understanding source code with functional magnetic resonance imaging. In ICSE 2014: Proceedings of the 36th International Conference on Software Engineering. ACM, 378--389. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. D. P. Simon and H. A. Simon. 2004. Individual differences in solving physics problems. In Children’s Thinking: What Develops? R. S. Siegler (Ed.). Lawrence Erlbaum Associates, Inc., Hillsdale, NJ.Google ScholarGoogle Scholar
  75. Edward E. Smith and John Jonides. 1999. Storage and executive processes in the frontal lobes. Science 283, 5408 (1999), 1657--1661.Google ScholarGoogle ScholarCross RefCross Ref
  76. M. E. Smith, L. K. McEvoy, and A. Gevins. 1999. Neurophysiological indices of strategy development and skill acquisition. Brain Res. Cogn. Brain Res. 7, 3 (January 1999), 389--404.Google ScholarGoogle ScholarCross RefCross Ref
  77. Elliot Soloway and Kate Ehrlich. 1984. Empirical studies of programming knowledge. IEEE Trans. Softw. Eng. 5 (1984), 595--609. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Andreas Stefik and Susanna Siebert. 2013. An empirical investigation into programming language syntax. Trans. Comput. Educ. 13, 4, Article 19 (November 2013), 40 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. A. Stipacek, R. H. Grabner, C. Neuper, A. Fink, and A. C. Neubauer. 2003. Sensitivity of human EEG alpha band desynchronization to different working memory components and increasing levels of memory load. Neurosci. Lett. 353, 3 (December 2003), 193--196.Google ScholarGoogle Scholar
  80. John Sweller. 2005. Implications of cognitive load theory for multimedia learning. In The Cambridge Handbook of Multimedia Learning. Cambridge University Press, Cambridge, U.K., 19--30.Google ScholarGoogle Scholar
  81. John Sweller, Paul Ayres, and Slava Kalyuga. 2011. Cognitive Load Theory. Springer, New York. http://books. google.com/books?id=sSAwbd8qOAACGoogle ScholarGoogle Scholar
  82. W. Paul Vogt. 2007. Quantitative Research Methods for Professionals. Pearson/Allyn and Bacon. http://books. google.com/books?id=NWIUAQAAMAAJ.Google ScholarGoogle Scholar
  83. Peter D. Welch. 1967. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 2 (June 1967), 70--73. DOI:http://dx.doi.org/10.1109/TAU.1967.1161901Google ScholarGoogle ScholarCross RefCross Ref
  84. P. Zhuang, C. Toro, J. Grafman, P. Manganotti, L. Leocani, and M. Hallett. 1997. Event-related desynchronization (ERD) in the alpha frequency during development of implicit and explicit learning. Electroencephalogr. Clin. Neurophysiol. 102, 4 (April 1997), 374--381.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Understanding Programming Expertise: An Empirical Study of Phasic Brain Wave Changes

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Computer-Human Interaction
      ACM Transactions on Computer-Human Interaction  Volume 23, Issue 1
      February 2016
      147 pages
      ISSN:1073-0516
      EISSN:1557-7325
      DOI:10.1145/2872314
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 31 December 2015
      • Accepted: 1 September 2015
      • Revised: 1 August 2015
      • Received: 1 June 2014
      Published in tochi Volume 23, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader