Abstract
We present a robust, dynamic scheme for the automatic self-deployment and relocation of mobile sensor nodes (e.g., unmanned ground vehicles, robots) around areas where phenomena take place. Our scheme aims (i) to sense environmental contextual parameters and accurately capture the spatiotemporal evolution of a certain phenomenon (e.g., fire, air contamination) and (ii) to fully automate the deployment process by letting nodes relocate, self-organize (and self-reorganize), and optimally cover the focus area. Our intention is to “opportunistically” modify the previous placement of nodes to attain high-quality phenomenon monitoring. The required intelligence is fully distributed within the mobile sensor network so the deployment algorithm is executed incrementally by different nodes. The presented algorithm adopts the Particle Swarm Optimization technique, which yields very promising results as reported in the article (performance assessment). Our findings show that the proposed algorithm captures a certain phenomenon with very high accuracy while maintaining the networkwide energy expenditure at low levels. Random occurrences of similar phenomena put stress upon the algorithm which manages to react promptly and efficiently manage the available sensing resources in the broader setting.
- C. Anagnostopoulos and S. Hadjiefthymiades. 2008. Enhancing situation-aware systems through imprecise reasoning. IEEE Trans. Mobile Comput. 7, 10 (Oct 2008), 1153--1168. DOI:http://dx.doi.org/10.1109/TMC.2008.34 Google Scholar
Digital Library
- Nor Azlina Ab. Aziz, Ammar W. Mohemmed, and Mengjie Zhang. 2010. Particle swarm optimization for coverage maximization and energy conservation in wireless sensor networks. In Proceedings of Applications of Evolutionary Computation: EvoApplications 2010: EvoCOMNET, EvoENVIRONMENT, EvoFIN, EvoMUSART, and EvoTRANSLOG, Part II. Springer, Berlin, 51--60. DOI:http://dx.doi.org/10.1007/978-3-642-12242-2_6 Google Scholar
Digital Library
- N. Bartolini, T. Calamoneri, E. G. Fusco, A. Massini, and S. Silvestri. 2008. Proceedings of the 4th IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS’08). Springer, Berlin, 451--456. DOI:http://dx.doi.org/10.1007/978-3-540-69170-9_30Google Scholar
- Nirupama Bulusu, John Heidemann, Deborah Estrin, and Tommy Tran. 2004. Self-configuring localization systems: Design and experimental evaluation. ACM Trans. Embed. Comput. Syst. 3, 1 (Feb. 2004), 24--60. DOI:http://dx.doi.org/10.1145/972627.972630 Google Scholar
Digital Library
- Xingjuan Cai, Yan Cui, and Ying Tan. 2009. Predicted modified PSO with time-varying accelerator coefficients. Int. J. Bio-Inspired Comput. 1, 1/2 (Jan. 2009), 50--60. DOI:http://dx.doi.org/10.1504/IJBIC.2009.022773 Google Scholar
Digital Library
- K. Chakrabarty, S. S. Iyengar, Hairong Qi, and Eungchun Cho. 2001. Coding theory framework for target location in distributed sensor networks. In Proceedings of the International Conference on Information Technology: Coding and Computing, 2001. 130--134. DOI:http://dx.doi.org/10.1109/ITCC.2001.918778 Google Scholar
Digital Library
- K. Chakrabarty, S. S. Iyengar, Hairong Qi, and Eungchun Cho. 2002. Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans. Comput. 51, 12 (Dec 2002), 1448--1453. DOI:http://dx.doi.org/10.1109/TC.2002.1146711 Google Scholar
Digital Library
- R. Cheng and Y. Jin. 2015a. A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybernet. 45, 2 (Feb. 2015), 191--204. DOI:http://dx.doi.org/10.1109/TCYB.2014.2322602Google Scholar
- Ran Cheng and Yaochu Jin. 2015b. A social learning particle swarm optimization algorithm for scalable optimization. Inform. Sci. 291 (2015), 43--60. DOI:http://dx.doi.org/10.1016/j.ins.2014.08.039 Google Scholar
Digital Library
- J. Cortes, S. Martinez, T. Karatas, and F. Bullo. 2004. Coverage control for mobile sensing networks. IEEE Trans. Robot. Automat. 20, 2 (April 2004), 243--255. DOI:http://dx.doi.org/10.1109/TRA.2004.824698Google Scholar
Cross Ref
- Hao Cui and Osman Turan. 2010. Application of a new multi-agent hybrid co-evolution based particle swarm optimisation methodology in ship design. Comput.-Aid. Des. 42, 11 (Nov. 2010), 1013--1027. DOI:http://dx.doi.org/10.1016/j.cad.2009.07.005 Google Scholar
Digital Library
- A. C. de A. Campello, G. C. Jorge, and S. I. R. Costa. 2011. Decoding q-ary lattices in the Lee metric. In Proceedings of the 2011 IEEE Information Theory Workshop (ITW’11). 220--224. DOI:http://dx.doi.org/10.1109/ITW.2011.6089382Google Scholar
Cross Ref
- S. S. Dhillon and K. Chakrabarty. 2003. Sensor placement for effective coverage and surveillance in distributed sensor networks. In Proceedings of the Wireless Communications and Networking Conference (WCNC’03), Vol. 3. 1609--1614. DOI:http://dx.doi.org/10.1109/WCNC.2003.1200627Google Scholar
- Marco Dorigo, Gianni Di Caro, and Luca M. Gambardella. 1999. Ant algorithms for discrete optimization. Artif. Life 5, 2 (April 1999), 137--172. DOI:http://dx.doi.org/10.1162/106454699568728 Google Scholar
Digital Library
- M. Dorigo and L. M. Gambardella. 1997. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 1 (Apr 1997), 53--66. DOI:http://dx.doi.org/10.1109/4235.585892 Google Scholar
Digital Library
- Falko Dressler. 2007. Self-Organization in Sensor and Actor Networks. John Wiley & Sons, Chichester, 384. Google Scholar
Digital Library
- Eberhart and Yuhui Shi. 2001. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1. 81--86. DOI:http://dx.doi.org/10.1109/CEC.2001.934374Google Scholar
- R. Eberhart and J. Kennedy. 1995. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on Micro Machine and Human Science (MHS’95). 39--43. DOI:http://dx.doi.org/10.1109/MHS.1995.494215Google Scholar
Cross Ref
- A. Elfes. 1991. Occupancy grids: A stochastic spatial representation for active robot perception. Autonomous Mobile Robots: Perception, Mapping, and Navigation, S. S. Iyengar and A. Elfes (Eds.). Vol. 1. IEEE Computer Society Press, Los Alamitos, CA, 60--70.Google Scholar
- M. Esnaashari and M. R. Meybodi. 2011. A cellular learning automata-based deployment strategy for mobile wireless sensor networks. J. Parallel Distrib. Comput. 71, 7 (July 2011), 988--1001. DOI:http://dx.doi.org/10.1016/j.jpdc.2010.10.015 Google Scholar
Digital Library
- Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. 1981. Optimal packing and covering in the plane are NP-complete. Inform. Process. Lett. 12, 3 (1981), 133--137. DOI:http://dx.doi.org/10.1016/0020-0190(81)90111-3Google Scholar
Cross Ref
- Massimo Franceschetti, Matthew Cook, and Jehoshua Bruck. 2001. A Geometric Theorem for Approximate Disk Covering Algorithms. Technical Report.Google Scholar
- M. Garetto, M. Gribaudo, C. F. Chiasserini, and E. Leonardi. 2007. A distributed sensor relocatlon scheme for environmental control. In Proceedings of the IEEE International Conference on Mobile Adhoc and Sensor Systems, 2007 (MASS’07). IEEE, 1--10. DOI:http://dx.doi.org/10.1109/MOBHOC.2007.4428663Google Scholar
Cross Ref
- Christopher M. Gifford, Eric L. Akers, Richard S. Stansbury, and Arvin Agah. 2009. The Path to Autonomous Robots: Essays in Honor of George A. Bekey. Springer, Boston, MA, 1--22. DOI:http://dx.doi.org/10.1007/978-0-387-85774-9_1Google Scholar
- C. M. Gifford, G. Finyom, M. Jefferson, M. Reid, E. L. Akers, and A. Agah. 2010. Automated polar ice thickness estimation from radar imagery. IEEE Trans. Image Process. 19, 9 (Sept 2010), 2456--2469. DOI:http://dx.doi.org/10.1109/TIP.2010.2048509 Google Scholar
Digital Library
- David Kiyoshi Goldenberg, Jie Lin, A. Stephen Morse, Brad E. Rosen, and Y. Richard Yang. 2004. Towards mobility as a network control primitive. In Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’04). ACM, New York, NY, 163--174. DOI:http://dx.doi.org/10.1145/989459.989481 Google Scholar
Digital Library
- Solomon W. Golomb and Lloyd R. Welch. 1970. Perfect codes in the lee metric and the packing of polyominoes. SIAM J. Appl. Math. 18, 2 (1970), 302--317. DOI:http://dx.doi.org/10.1137/0118025Google Scholar
Digital Library
- Qingyuan He and Chuanjiu Han. 2006. Computational Intelligence and Bioinformatics: Proceedings of the 2006 International Conference on Intelligent Computing (ICIC’06) Part III. Springer, Berlin, 100--108. DOI:http://dx.doi.org/10.1007/11816102_11Google Scholar
- Irja Helm, Lauri Jalukse, and Ivo Leito. 2010. Measurement uncertainty estimation in amperometric sensors: A tutorial review. Sensors 10, 5 (2010), 4430. DOI:http://dx.doi.org/10.3390/s100504430Google Scholar
Cross Ref
- Nojeong Heo and P. K. Varshney. 2005. Energy-efficient deployment of intelligent mobile sensor networks. IEEE Trans. Syst. Man Cybernet. A: Syst. Hum. 35, 1 (Jan 2005), 78--92. DOI:http://dx.doi.org/10.1109/TSMCA.2004.838486 Google Scholar
Digital Library
- Victor Hernandez Bennetts, Erik Schaffernicht, Victor Pomareda, Achim J. Lilienthal, Santiago Marco, and Marco Trincavelli. 2014. Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds. Sensors 14, 9 (2014), 17331. DOI:http://dx.doi.org/10.3390/s140917331Google Scholar
Cross Ref
- Chi-Fu Huang and Yu-Chee Tseng. 2003. The coverage problem in a wireless sensor network. In Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications (WSNA’03). ACM, New York, NY, 115--121. DOI:http://dx.doi.org/10.1145/941350.941367 Google Scholar
Digital Library
- Koushik Kar and Suman Banerjee. 2003. Node Placement for Connected Coverage in Sensor Networks. WiOpt’03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. (March 2003). https://hal.inria.fr/inria-00466114 Poster.Google Scholar
- Dervis Karaboga and Bahriye Basturk. 2007. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Global Optimiz. 39, 3 (Nov. 2007), 459--471. DOI:http://dx.doi.org/10.1007/s10898-007-9149-x Google Scholar
Digital Library
- X. Li, H. Frey, N. Santoro, and I. Stojmenovic. 2011. Strictly localized sensor self-deployment for optimal focused coverage. IEEE Trans. Mobile Comput. 10, 11 (Nov 2011), 1520--1533. DOI:http://dx.doi.org/10.1109/TMC.2010.261 Google Scholar
Digital Library
- Y. L. Li, W. Shao, L. You, and B. Z. Wang. 2013. An improved PSO algorithm and its application to UWB antenna design. IEEE Antennas Wireless Propagat. Lett. 12 (2013), 1236--1239. DOI:http://dx.doi.org/10.1109/LAWP.2013.2283375Google Scholar
Cross Ref
- S. Liang, S. Song, L. Kong, and J. Cheng. 2010. An improved particle swarm optimization algorithm and its convergence analysis. In Proceedings of the 2010 International Conference on Computer Modeling and Simulation (ICCMS’10), Vol. 2. 138--141. DOI:http://dx.doi.org/10.1109/ICCMS.2010.316 Google Scholar
Digital Library
- Annie Liu, Michael Olson, Julian Bunn, and K. Mani Chandy. 2012. Towards a discipline of geospatial distributed event based systems. In Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems (DEBS'12). ACM, New York, NY, USA, 95--106. Google Scholar
Digital Library
- E. S. Manolakos, D. V. Manatakis, and G. Xanthopoulos. 2008. Temperature field modeling and simulation of wireless sensor network behavior during a spreading wildfire. In Proceedings of the 2008 16th Annual European Signal Processing Conference. 1--5.Google Scholar
- M. Marengoni, B. A. Draper, A. Hanson, and R. Sitaraman. 2000. A system to place observers on a polyhedral terrain in polynomial time. Image Vision Comput. 18, 10 (2000), 773--780. DOI:http://dx.doi.org/10.1016/S0262-8856(99)00045-1Google Scholar
Cross Ref
- S. Megerian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. 2005. Worst and best-case coverage in sensor networks. IEEE Trans. Mobile Comput. 4, 1 (Jan 2005), 84--92. DOI:http://dx.doi.org/10.1109/TMC.2005.15 Google Scholar
Digital Library
- S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. 2001. Coverage problems in wireless ad-hoc sensor networks. In Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’01). IEEE, Vol. 3. 1380--1387. DOI:http://dx.doi.org/10.1109/INFCOM.2001.916633Google Scholar
- Yongguo Mei, Yung-Hsiang Lu, Y. C. Hu, and C. S. G. Lee. 2005. A case study of mobile robot’s energy consumption and conservation techniques. In Proceedings of the 12th International Conference on Advanced Robotics, 2005 (ICAR’05). 492--497. DOI:http://dx.doi.org/10.1109/ICAR.2005.1507454Google Scholar
- Francesco Mondada, Giovanni C. Pettinaro, Andre Guignard, Ivo W. Kwee, Dario Floreano, Jean-Louis Deneubourg, Stefano Nolfi, Luca Maria Gambardella, and Marco Dorigo. Swarm-bot: A new distributed robotic concept. Autonom. Robots 17, 2, 193--221. DOI:http://dx.doi.org/10.1023/B:AURO.0000033972.50769.1c Google Scholar
Digital Library
- Mohammad Abdur Razzaque and Simon Dobson. 2014. Energy-efficient sensing in wireless sensor networks using compressed sensing. Sensors 14, 2 (2014), 2822. DOI:http://dx.doi.org/10.3390/s140202822Google Scholar
Cross Ref
- Andreas Savvides, Chih-Chieh Han, and Mani B. Strivastava. 2001. Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking (MobiCom’01). ACM, New York, NY, 166--179. DOI:http://dx.doi.org/10.1145/381677.381693 Google Scholar
Digital Library
- O. Sekkas, S. Hadjiefthymiades, and E. Zervas. 2010. A multi-level data fusion approach for early fire detection. In 2010 2nd International Conference on Intelligent Networking and Collaborative Systems (INCOS). 479--483. DOI:http://dx.doi.org/10.1109/INCOS.2010.64 Google Scholar
Digital Library
- Y. Shi and R. C. Eberhart. 1999. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC 99), Vol. 3. 1950. DOI:http://dx.doi.org/10.1109/CEC.1999.785511Google Scholar
- Francisco J. Solis and Roger J.-B. Wets. 1981. Minimization by random search techniques. Math. Operat. Res. 6, 1 (1981), 19--30. DOI:http://dx.doi.org/10.1287/moor.6.1.19 Google Scholar
Digital Library
- Chiping Tang and P. K. McKinley. 2006. Energy optimization under informed mobility. IEEE Trans. Parallel Distrib. Syst. 17, 9 (Sept 2006), 947--962. DOI:http://dx.doi.org/10.1109/TPDS.2006.122 Google Scholar
Digital Library
- Peng-Jun Wan and Chih-Wei Yi. 2006. Coverage by randomly deployed wireless sensor networks. IEEE Trans. Inform. Theor. 52, 6 (June 2006), 2658--2669. DOI:http://dx.doi.org/10.1109/TIT.2005.862092Google Scholar
- Bang Wang. 2010. Coverage Control in Sensor Networks (1st ed.). Springer, Berlin. Google Scholar
Digital Library
- Bang Wang. 2011. Coverage problems in sensor networks: A survey. ACM Comput. Surv. 43, 4, Article 32 (Oct. 2011), 53 pages. DOI:http://dx.doi.org/10.1145/1978802.1978811 Google Scholar
Digital Library
- G. Wang, G. Cao, and T. F. La Porta. 2006. Movement-assisted sensor deployment. IEEE Trans. Mobile Comput. 5, 6 (June 2006), 640--652. DOI:http://dx.doi.org/10.1109/TMC.2006.80 Google Scholar
Digital Library
- Lei Wang and Qingzheng Xu. 2010. GPS-free localization algorithm for wireless sensor networks. Sensors 10, 6 (2010), 5899. DOI:http://dx.doi.org/10.3390/s100605899Google Scholar
Cross Ref
- Xue Wang, Sheng Wang, and Jun-Jie Ma. 2007. An improved co-evolutionary particle swarm optimization for wireless sensor networks with dynamic deployment. Sensors 7, 3 (2007), 354. DOI:http://dx.doi.org/10.3390/s7030354Google Scholar
Cross Ref
- Y. C. Wang, C. C. Hu, and Y. C. Tseng. 2008. Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Trans. Mobile Comput. 7, 2 (Feb 2008), 262--274. DOI:http://dx.doi.org/10.1109/TMC.2007.70708 Google Scholar
Digital Library
- Robert Williams. 1979. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publ., New York, NY.Google Scholar
- Jie Wu. 2005. Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks. Auerbach Publications, Boston, MA, USA. Google Scholar
Digital Library
- Y. Xiao, H. Chen, K. Wu, B. Sun, and C. Liu. 2007. Modeling detection metrics in randomized scheduling algorithm in wireless sensor networks. In Proceedings of the Wireless Communications and Networking Conference, 2007 (WCNC’07). IEEE, 3741--3745. DOI:http://dx.doi.org/10.1109/WCNC.2007.685 Google Scholar
Digital Library
- Kenan Xu, Glen Takahara, and Hossam Hassanein. 2006. On the robustness of grid-based deployment in wireless sensor networks. In Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing (IWCMC’06). ACM, New York, NY, 1183--1188. DOI:http://dx.doi.org/10.1145/1143549.1143786 Google Scholar
Digital Library
- Shuhui Yang, Fei Dai, Mihaela Cardei, Jie Wu, and Floyd Patterson. 2006. On connected multiple point coverage in wireless sensor networks. International J. Wireless Inform. Networks 13, 4 (2006), 289--301. DOI:http://dx.doi.org/10.1007/s10776-006-0036-zGoogle Scholar
Cross Ref
- O. Younis and S. Fahmy. 2004. HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans. Mobile Comput. 3, 4 (Oct. 2004), 366--379. DOI:http://dx.doi.org/10.1109/TMC.2004.41Google Scholar
Cross Ref
- Z. Yun, X. Bai, D. Xuan, T. H. Lai, and W. Jia. 2010. Optimal deployment patterns for full coverage and k -connectivity (k ⩽ 6) wireless sensor networks. IEEE/ACM Trans. Network. 18, 3 (June 2010), 934--947. DOI:http://dx.doi.org/10.1109/TNET.2010.2040191 Google Scholar
Digital Library
- E. Zervas, A. Mpimpoudis, C. Anagnostopoulos, O. Sekkas, and S. Hadjiefthymiades. 2011. Multisensor data fusion for fire detection. Inform. Fusion 12, 3 (2011), 150--159. DOI:http://dx.doi.org/10.1016/j.inffus.2009.12.006 Google Scholar
Digital Library
- Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung. 2009. Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybernet. B 39, 6 (Dec. 2009), 1362--1381. DOI:http://dx.doi.org/10.1109/TSMCB.2009.2015956 Google Scholar
Digital Library
- Yi Zou and Krishnendu Chakrabarty. 2004. Sensor deployment and target localization in distributed sensor networks. ACM Trans. Embed. Comput. Syst. 3, 1 (Feb. 2004), 61--91. DOI:http://dx.doi.org/10.1145/972627.972631 Google Scholar
Digital Library
Index Terms
Accurate, Dynamic, and Distributed Localization of Phenomena for Mobile Sensor Networks
Recommendations
Timing-Based Mobile Sensor Localization in Wireless Sensor and Actor Networks
In this paper, localization problem in wireless sensor and actor networks (WSAN) is addressed. In WSAN, the performance of event detection and tracking highly depends on the exact location information of the events that must be reported along with the ...
Analytic modeling of detection latency in mobile sensor networks
IPSN '06: Proceedings of the 5th international conference on Information processing in sensor networksAn envisioned usage of sensor networks is in surveillance systems for detecting a target or monitoring a physical phenomenon in a region. Traditionally, stationary sensor networks are deployed to carry out the sensing operations. In many applications, ...
Coverage optimization in wireless mobile sensor networks
WiCOM'09: Proceedings of the 5th International Conference on Wireless communications, networking and mobile computingThe coverage of Wireless Sensor Networks (WSNs) is one of the most important measurement criteria of Qos. Optimal coverage of sensors is propitious to the maximum possible utilization of the available sensors. It can balance node energy consumption, and ...






Comments