skip to main content
research-article

Accurate, Dynamic, and Distributed Localization of Phenomena for Mobile Sensor Networks

Authors Info & Claims
Published:15 April 2016Publication History
Skip Abstract Section

Abstract

We present a robust, dynamic scheme for the automatic self-deployment and relocation of mobile sensor nodes (e.g., unmanned ground vehicles, robots) around areas where phenomena take place. Our scheme aims (i) to sense environmental contextual parameters and accurately capture the spatiotemporal evolution of a certain phenomenon (e.g., fire, air contamination) and (ii) to fully automate the deployment process by letting nodes relocate, self-organize (and self-reorganize), and optimally cover the focus area. Our intention is to “opportunistically” modify the previous placement of nodes to attain high-quality phenomenon monitoring. The required intelligence is fully distributed within the mobile sensor network so the deployment algorithm is executed incrementally by different nodes. The presented algorithm adopts the Particle Swarm Optimization technique, which yields very promising results as reported in the article (performance assessment). Our findings show that the proposed algorithm captures a certain phenomenon with very high accuracy while maintaining the networkwide energy expenditure at low levels. Random occurrences of similar phenomena put stress upon the algorithm which manages to react promptly and efficiently manage the available sensing resources in the broader setting.

References

  1. C. Anagnostopoulos and S. Hadjiefthymiades. 2008. Enhancing situation-aware systems through imprecise reasoning. IEEE Trans. Mobile Comput. 7, 10 (Oct 2008), 1153--1168. DOI:http://dx.doi.org/10.1109/TMC.2008.34 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Nor Azlina Ab. Aziz, Ammar W. Mohemmed, and Mengjie Zhang. 2010. Particle swarm optimization for coverage maximization and energy conservation in wireless sensor networks. In Proceedings of Applications of Evolutionary Computation: EvoApplications 2010: EvoCOMNET, EvoENVIRONMENT, EvoFIN, EvoMUSART, and EvoTRANSLOG, Part II. Springer, Berlin, 51--60. DOI:http://dx.doi.org/10.1007/978-3-642-12242-2_6 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. N. Bartolini, T. Calamoneri, E. G. Fusco, A. Massini, and S. Silvestri. 2008. Proceedings of the 4th IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS’08). Springer, Berlin, 451--456. DOI:http://dx.doi.org/10.1007/978-3-540-69170-9_30Google ScholarGoogle Scholar
  4. Nirupama Bulusu, John Heidemann, Deborah Estrin, and Tommy Tran. 2004. Self-configuring localization systems: Design and experimental evaluation. ACM Trans. Embed. Comput. Syst. 3, 1 (Feb. 2004), 24--60. DOI:http://dx.doi.org/10.1145/972627.972630 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Xingjuan Cai, Yan Cui, and Ying Tan. 2009. Predicted modified PSO with time-varying accelerator coefficients. Int. J. Bio-Inspired Comput. 1, 1/2 (Jan. 2009), 50--60. DOI:http://dx.doi.org/10.1504/IJBIC.2009.022773 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. K. Chakrabarty, S. S. Iyengar, Hairong Qi, and Eungchun Cho. 2001. Coding theory framework for target location in distributed sensor networks. In Proceedings of the International Conference on Information Technology: Coding and Computing, 2001. 130--134. DOI:http://dx.doi.org/10.1109/ITCC.2001.918778 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. K. Chakrabarty, S. S. Iyengar, Hairong Qi, and Eungchun Cho. 2002. Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans. Comput. 51, 12 (Dec 2002), 1448--1453. DOI:http://dx.doi.org/10.1109/TC.2002.1146711 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R. Cheng and Y. Jin. 2015a. A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybernet. 45, 2 (Feb. 2015), 191--204. DOI:http://dx.doi.org/10.1109/TCYB.2014.2322602Google ScholarGoogle Scholar
  9. Ran Cheng and Yaochu Jin. 2015b. A social learning particle swarm optimization algorithm for scalable optimization. Inform. Sci. 291 (2015), 43--60. DOI:http://dx.doi.org/10.1016/j.ins.2014.08.039 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Cortes, S. Martinez, T. Karatas, and F. Bullo. 2004. Coverage control for mobile sensing networks. IEEE Trans. Robot. Automat. 20, 2 (April 2004), 243--255. DOI:http://dx.doi.org/10.1109/TRA.2004.824698Google ScholarGoogle ScholarCross RefCross Ref
  11. Hao Cui and Osman Turan. 2010. Application of a new multi-agent hybrid co-evolution based particle swarm optimisation methodology in ship design. Comput.-Aid. Des. 42, 11 (Nov. 2010), 1013--1027. DOI:http://dx.doi.org/10.1016/j.cad.2009.07.005 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. C. de A. Campello, G. C. Jorge, and S. I. R. Costa. 2011. Decoding q-ary lattices in the Lee metric. In Proceedings of the 2011 IEEE Information Theory Workshop (ITW’11). 220--224. DOI:http://dx.doi.org/10.1109/ITW.2011.6089382Google ScholarGoogle ScholarCross RefCross Ref
  13. S. S. Dhillon and K. Chakrabarty. 2003. Sensor placement for effective coverage and surveillance in distributed sensor networks. In Proceedings of the Wireless Communications and Networking Conference (WCNC’03), Vol. 3. 1609--1614. DOI:http://dx.doi.org/10.1109/WCNC.2003.1200627Google ScholarGoogle Scholar
  14. Marco Dorigo, Gianni Di Caro, and Luca M. Gambardella. 1999. Ant algorithms for discrete optimization. Artif. Life 5, 2 (April 1999), 137--172. DOI:http://dx.doi.org/10.1162/106454699568728 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Dorigo and L. M. Gambardella. 1997. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 1 (Apr 1997), 53--66. DOI:http://dx.doi.org/10.1109/4235.585892 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Falko Dressler. 2007. Self-Organization in Sensor and Actor Networks. John Wiley & Sons, Chichester, 384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Eberhart and Yuhui Shi. 2001. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1. 81--86. DOI:http://dx.doi.org/10.1109/CEC.2001.934374Google ScholarGoogle Scholar
  18. R. Eberhart and J. Kennedy. 1995. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on Micro Machine and Human Science (MHS’95). 39--43. DOI:http://dx.doi.org/10.1109/MHS.1995.494215Google ScholarGoogle ScholarCross RefCross Ref
  19. A. Elfes. 1991. Occupancy grids: A stochastic spatial representation for active robot perception. Autonomous Mobile Robots: Perception, Mapping, and Navigation, S. S. Iyengar and A. Elfes (Eds.). Vol. 1. IEEE Computer Society Press, Los Alamitos, CA, 60--70.Google ScholarGoogle Scholar
  20. M. Esnaashari and M. R. Meybodi. 2011. A cellular learning automata-based deployment strategy for mobile wireless sensor networks. J. Parallel Distrib. Comput. 71, 7 (July 2011), 988--1001. DOI:http://dx.doi.org/10.1016/j.jpdc.2010.10.015 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. 1981. Optimal packing and covering in the plane are NP-complete. Inform. Process. Lett. 12, 3 (1981), 133--137. DOI:http://dx.doi.org/10.1016/0020-0190(81)90111-3Google ScholarGoogle ScholarCross RefCross Ref
  22. Massimo Franceschetti, Matthew Cook, and Jehoshua Bruck. 2001. A Geometric Theorem for Approximate Disk Covering Algorithms. Technical Report.Google ScholarGoogle Scholar
  23. M. Garetto, M. Gribaudo, C. F. Chiasserini, and E. Leonardi. 2007. A distributed sensor relocatlon scheme for environmental control. In Proceedings of the IEEE International Conference on Mobile Adhoc and Sensor Systems, 2007 (MASS’07). IEEE, 1--10. DOI:http://dx.doi.org/10.1109/MOBHOC.2007.4428663Google ScholarGoogle ScholarCross RefCross Ref
  24. Christopher M. Gifford, Eric L. Akers, Richard S. Stansbury, and Arvin Agah. 2009. The Path to Autonomous Robots: Essays in Honor of George A. Bekey. Springer, Boston, MA, 1--22. DOI:http://dx.doi.org/10.1007/978-0-387-85774-9_1Google ScholarGoogle Scholar
  25. C. M. Gifford, G. Finyom, M. Jefferson, M. Reid, E. L. Akers, and A. Agah. 2010. Automated polar ice thickness estimation from radar imagery. IEEE Trans. Image Process. 19, 9 (Sept 2010), 2456--2469. DOI:http://dx.doi.org/10.1109/TIP.2010.2048509 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. David Kiyoshi Goldenberg, Jie Lin, A. Stephen Morse, Brad E. Rosen, and Y. Richard Yang. 2004. Towards mobility as a network control primitive. In Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’04). ACM, New York, NY, 163--174. DOI:http://dx.doi.org/10.1145/989459.989481 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Solomon W. Golomb and Lloyd R. Welch. 1970. Perfect codes in the lee metric and the packing of polyominoes. SIAM J. Appl. Math. 18, 2 (1970), 302--317. DOI:http://dx.doi.org/10.1137/0118025Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Qingyuan He and Chuanjiu Han. 2006. Computational Intelligence and Bioinformatics: Proceedings of the 2006 International Conference on Intelligent Computing (ICIC’06) Part III. Springer, Berlin, 100--108. DOI:http://dx.doi.org/10.1007/11816102_11Google ScholarGoogle Scholar
  29. Irja Helm, Lauri Jalukse, and Ivo Leito. 2010. Measurement uncertainty estimation in amperometric sensors: A tutorial review. Sensors 10, 5 (2010), 4430. DOI:http://dx.doi.org/10.3390/s100504430Google ScholarGoogle ScholarCross RefCross Ref
  30. Nojeong Heo and P. K. Varshney. 2005. Energy-efficient deployment of intelligent mobile sensor networks. IEEE Trans. Syst. Man Cybernet. A: Syst. Hum. 35, 1 (Jan 2005), 78--92. DOI:http://dx.doi.org/10.1109/TSMCA.2004.838486 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Victor Hernandez Bennetts, Erik Schaffernicht, Victor Pomareda, Achim J. Lilienthal, Santiago Marco, and Marco Trincavelli. 2014. Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds. Sensors 14, 9 (2014), 17331. DOI:http://dx.doi.org/10.3390/s140917331Google ScholarGoogle ScholarCross RefCross Ref
  32. Chi-Fu Huang and Yu-Chee Tseng. 2003. The coverage problem in a wireless sensor network. In Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications (WSNA’03). ACM, New York, NY, 115--121. DOI:http://dx.doi.org/10.1145/941350.941367 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Koushik Kar and Suman Banerjee. 2003. Node Placement for Connected Coverage in Sensor Networks. WiOpt’03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. (March 2003). https://hal.inria.fr/inria-00466114 Poster.Google ScholarGoogle Scholar
  34. Dervis Karaboga and Bahriye Basturk. 2007. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Global Optimiz. 39, 3 (Nov. 2007), 459--471. DOI:http://dx.doi.org/10.1007/s10898-007-9149-x Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. X. Li, H. Frey, N. Santoro, and I. Stojmenovic. 2011. Strictly localized sensor self-deployment for optimal focused coverage. IEEE Trans. Mobile Comput. 10, 11 (Nov 2011), 1520--1533. DOI:http://dx.doi.org/10.1109/TMC.2010.261 Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Y. L. Li, W. Shao, L. You, and B. Z. Wang. 2013. An improved PSO algorithm and its application to UWB antenna design. IEEE Antennas Wireless Propagat. Lett. 12 (2013), 1236--1239. DOI:http://dx.doi.org/10.1109/LAWP.2013.2283375Google ScholarGoogle ScholarCross RefCross Ref
  37. S. Liang, S. Song, L. Kong, and J. Cheng. 2010. An improved particle swarm optimization algorithm and its convergence analysis. In Proceedings of the 2010 International Conference on Computer Modeling and Simulation (ICCMS’10), Vol. 2. 138--141. DOI:http://dx.doi.org/10.1109/ICCMS.2010.316 Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Annie Liu, Michael Olson, Julian Bunn, and K. Mani Chandy. 2012. Towards a discipline of geospatial distributed event based systems. In Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems (DEBS'12). ACM, New York, NY, USA, 95--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. E. S. Manolakos, D. V. Manatakis, and G. Xanthopoulos. 2008. Temperature field modeling and simulation of wireless sensor network behavior during a spreading wildfire. In Proceedings of the 2008 16th Annual European Signal Processing Conference. 1--5.Google ScholarGoogle Scholar
  40. M. Marengoni, B. A. Draper, A. Hanson, and R. Sitaraman. 2000. A system to place observers on a polyhedral terrain in polynomial time. Image Vision Comput. 18, 10 (2000), 773--780. DOI:http://dx.doi.org/10.1016/S0262-8856(99)00045-1Google ScholarGoogle ScholarCross RefCross Ref
  41. S. Megerian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. 2005. Worst and best-case coverage in sensor networks. IEEE Trans. Mobile Comput. 4, 1 (Jan 2005), 84--92. DOI:http://dx.doi.org/10.1109/TMC.2005.15 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. 2001. Coverage problems in wireless ad-hoc sensor networks. In Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’01). IEEE, Vol. 3. 1380--1387. DOI:http://dx.doi.org/10.1109/INFCOM.2001.916633Google ScholarGoogle Scholar
  43. Yongguo Mei, Yung-Hsiang Lu, Y. C. Hu, and C. S. G. Lee. 2005. A case study of mobile robot’s energy consumption and conservation techniques. In Proceedings of the 12th International Conference on Advanced Robotics, 2005 (ICAR’05). 492--497. DOI:http://dx.doi.org/10.1109/ICAR.2005.1507454Google ScholarGoogle Scholar
  44. Francesco Mondada, Giovanni C. Pettinaro, Andre Guignard, Ivo W. Kwee, Dario Floreano, Jean-Louis Deneubourg, Stefano Nolfi, Luca Maria Gambardella, and Marco Dorigo. Swarm-bot: A new distributed robotic concept. Autonom. Robots 17, 2, 193--221. DOI:http://dx.doi.org/10.1023/B:AURO.0000033972.50769.1c Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Mohammad Abdur Razzaque and Simon Dobson. 2014. Energy-efficient sensing in wireless sensor networks using compressed sensing. Sensors 14, 2 (2014), 2822. DOI:http://dx.doi.org/10.3390/s140202822Google ScholarGoogle ScholarCross RefCross Ref
  46. Andreas Savvides, Chih-Chieh Han, and Mani B. Strivastava. 2001. Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking (MobiCom’01). ACM, New York, NY, 166--179. DOI:http://dx.doi.org/10.1145/381677.381693 Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. O. Sekkas, S. Hadjiefthymiades, and E. Zervas. 2010. A multi-level data fusion approach for early fire detection. In 2010 2nd International Conference on Intelligent Networking and Collaborative Systems (INCOS). 479--483. DOI:http://dx.doi.org/10.1109/INCOS.2010.64 Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Y. Shi and R. C. Eberhart. 1999. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC 99), Vol. 3. 1950. DOI:http://dx.doi.org/10.1109/CEC.1999.785511Google ScholarGoogle Scholar
  49. Francisco J. Solis and Roger J.-B. Wets. 1981. Minimization by random search techniques. Math. Operat. Res. 6, 1 (1981), 19--30. DOI:http://dx.doi.org/10.1287/moor.6.1.19 Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Chiping Tang and P. K. McKinley. 2006. Energy optimization under informed mobility. IEEE Trans. Parallel Distrib. Syst. 17, 9 (Sept 2006), 947--962. DOI:http://dx.doi.org/10.1109/TPDS.2006.122 Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Peng-Jun Wan and Chih-Wei Yi. 2006. Coverage by randomly deployed wireless sensor networks. IEEE Trans. Inform. Theor. 52, 6 (June 2006), 2658--2669. DOI:http://dx.doi.org/10.1109/TIT.2005.862092Google ScholarGoogle Scholar
  52. Bang Wang. 2010. Coverage Control in Sensor Networks (1st ed.). Springer, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Bang Wang. 2011. Coverage problems in sensor networks: A survey. ACM Comput. Surv. 43, 4, Article 32 (Oct. 2011), 53 pages. DOI:http://dx.doi.org/10.1145/1978802.1978811 Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. G. Wang, G. Cao, and T. F. La Porta. 2006. Movement-assisted sensor deployment. IEEE Trans. Mobile Comput. 5, 6 (June 2006), 640--652. DOI:http://dx.doi.org/10.1109/TMC.2006.80 Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Lei Wang and Qingzheng Xu. 2010. GPS-free localization algorithm for wireless sensor networks. Sensors 10, 6 (2010), 5899. DOI:http://dx.doi.org/10.3390/s100605899Google ScholarGoogle ScholarCross RefCross Ref
  56. Xue Wang, Sheng Wang, and Jun-Jie Ma. 2007. An improved co-evolutionary particle swarm optimization for wireless sensor networks with dynamic deployment. Sensors 7, 3 (2007), 354. DOI:http://dx.doi.org/10.3390/s7030354Google ScholarGoogle ScholarCross RefCross Ref
  57. Y. C. Wang, C. C. Hu, and Y. C. Tseng. 2008. Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Trans. Mobile Comput. 7, 2 (Feb 2008), 262--274. DOI:http://dx.doi.org/10.1109/TMC.2007.70708 Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Robert Williams. 1979. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publ., New York, NY.Google ScholarGoogle Scholar
  59. Jie Wu. 2005. Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks. Auerbach Publications, Boston, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Y. Xiao, H. Chen, K. Wu, B. Sun, and C. Liu. 2007. Modeling detection metrics in randomized scheduling algorithm in wireless sensor networks. In Proceedings of the Wireless Communications and Networking Conference, 2007 (WCNC’07). IEEE, 3741--3745. DOI:http://dx.doi.org/10.1109/WCNC.2007.685 Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Kenan Xu, Glen Takahara, and Hossam Hassanein. 2006. On the robustness of grid-based deployment in wireless sensor networks. In Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing (IWCMC’06). ACM, New York, NY, 1183--1188. DOI:http://dx.doi.org/10.1145/1143549.1143786 Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Shuhui Yang, Fei Dai, Mihaela Cardei, Jie Wu, and Floyd Patterson. 2006. On connected multiple point coverage in wireless sensor networks. International J. Wireless Inform. Networks 13, 4 (2006), 289--301. DOI:http://dx.doi.org/10.1007/s10776-006-0036-zGoogle ScholarGoogle ScholarCross RefCross Ref
  63. O. Younis and S. Fahmy. 2004. HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans. Mobile Comput. 3, 4 (Oct. 2004), 366--379. DOI:http://dx.doi.org/10.1109/TMC.2004.41Google ScholarGoogle ScholarCross RefCross Ref
  64. Z. Yun, X. Bai, D. Xuan, T. H. Lai, and W. Jia. 2010. Optimal deployment patterns for full coverage and k -connectivity (k ⩽ 6) wireless sensor networks. IEEE/ACM Trans. Network. 18, 3 (June 2010), 934--947. DOI:http://dx.doi.org/10.1109/TNET.2010.2040191 Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. E. Zervas, A. Mpimpoudis, C. Anagnostopoulos, O. Sekkas, and S. Hadjiefthymiades. 2011. Multisensor data fusion for fire detection. Inform. Fusion 12, 3 (2011), 150--159. DOI:http://dx.doi.org/10.1016/j.inffus.2009.12.006 Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung. 2009. Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybernet. B 39, 6 (Dec. 2009), 1362--1381. DOI:http://dx.doi.org/10.1109/TSMCB.2009.2015956 Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Yi Zou and Krishnendu Chakrabarty. 2004. Sensor deployment and target localization in distributed sensor networks. ACM Trans. Embed. Comput. Syst. 3, 1 (Feb. 2004), 61--91. DOI:http://dx.doi.org/10.1145/972627.972631 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Accurate, Dynamic, and Distributed Localization of Phenomena for Mobile Sensor Networks

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Sensor Networks
          ACM Transactions on Sensor Networks  Volume 12, Issue 2
          May 2016
          323 pages
          ISSN:1550-4859
          EISSN:1550-4867
          DOI:10.1145/2925994
          • Editor:
          • Chenyang Lu
          Issue’s Table of Contents

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 15 April 2016
          • Accepted: 1 January 2016
          • Revised: 1 September 2015
          • Received: 1 November 2014
          Published in tosn Volume 12, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader