skip to main content
research-article

A Robust and Scalable Implementation of the Parks-McClellan Algorithm for Designing FIR Filters

Published: 13 August 2016 Publication History

Abstract

With a long history dating back to the beginning of the 1970s, the Parks-McClellan algorithm is probably the most well known approach for designing finite impulse response filters. Despite being a standard routine in many signal processing packages, it is possible to find practical design specifications where existing codes fail to work. Our goal is twofold. We first examine and present solutions for the practical difficulties related to weighted minimax polynomial approximation problems on multi-interval domains (i.e., the general setting under which the Parks-McClellan algorithm operates). Using these ideas, we then describe a robust implementation of this algorithm. It routinely outperforms existing minimax filter design routines.

References

[1]
W. A. Abu-Al-Saud and G. L. Stüber. 2004. Efficient wideband channelizer for software radio systems using modulated PR filterbanks. IEEE Transactions on Signal Processing, 52, 10, 2807--2820.
[2]
J. W. Adams and A. N. Wilson. 1985. On the fast design of high-order FIR digital filters. IEEE Transactions on Circuits and Systems 32, 9, 958--960.
[3]
M. Ahsan and T. Saramäki. 2012. Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design. Retrieved July 16, 2016, from http://www.intechopen.com/download/pdf/39374
[4]
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. 1999. LAPACK Users' Guide. Vol. 9. SIAM.
[5]
A. Antoniou. 1982. Accelerated procedure for the design of equiripple nonrecursive digital filters. IEE Proceedings G: Electronic Circuits and Systems 129, 1, 1--10.
[6]
A. Antoniou. 1983. New improved method for the design of weighted-Chebyshev, nonrecursive, digital filters. IEEE Transactions on Circuits and Systems 30, 10, 740--750.
[7]
A. Antoniou. 2005. Digital Signal Processing: Signals, Systems, and Filters. McGraw-Hill Education.
[8]
J.-P. Berrut and L. N. Trefethen. 2004. Barycentric Lagrange interpolation. SIAM Review 46, 3, 501--517.
[9]
F. Bonzanigo. 1982. Some improvements to the design programs for equiripple FIR filters. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'82), Vol. 7. 274--277.
[10]
L. P. Bos, J.-P. Calvi, N. Levenberg, A. Sommariva, and M. Vianello. 2011. Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points. Mathematics of Computation 80, 275, 1623--1638.
[11]
L. P. Bos and N. Levenberg. 2008. On the calculation of approximate Fekete points: The univariate case. Electronic Transactions on Numerical Analysis 30, 377--397.
[12]
J. P. Boyd. 2006. Computing the zeros, maxima and inflection points of Chebyshev, Legendre and Fourier series: Solving transcendental equations by spectral interpolation and polynomial rootfinding. Journal of Engineering Mathematics 56, 3, 203--219.
[13]
J. P. Boyd. 2013. Finding the zeros of a univariate equation: Proxy rootfinders, Chebyshev interpolation, and the companion matrix. SIAM Review 55, 2, 375--396.
[14]
J. P. Boyd and D. H. Gally. 2007. Numerical experiments on the accuracy of the Chebyshev-Frobenius companion matrix method for finding the zeros of a truncated series of Chebyshev polynomials. Journal of Computational and Applied Mathematics 205, 1, 281--295.
[15]
J.-P. Calvi and N. Levenberg. 2008. Uniform approximation by discrete least squares polynomials. Journal of Approximation Theory 152, 1, 82--100.
[16]
A. Çivril and M. Magdon-Ismail. 2009. On selecting a maximum volume sub-matrix of a matrix and related problems. Theoretical Computer Science 410, 47--49, 4801--4811.
[17]
E. W. Cheney. 1982. Introduction to Approximation Theory. AMS Chelsea Publications.
[18]
L. Dagum and R. Menon. 1998. OpenMP: An industry standard API for shared-memory programming. IEEE Computational Science Engineering 5, 1, 46--55.
[19]
D. Day and L. Romero. 2005. Roots of polynomials expressed in terms of orthogonal polynomials. SIAM Journal on Numerical Analysis 43, 5, 1969--1987.
[20]
F. De Dinechin, M. Istoan, and A. Massouri. 2014. Sum-of-product architectures computing just right. In Proceedings of the 2014 IEEE 25th International Conference on Application-Specific Systems, Architectures, and Processors (ASAP'14). 41--47.
[21]
T. A. Driscoll, N. Hale, and L. N. Trefethen. 2014. Chebfun Guide. Pafnuty Publications, Oxford, UK.
[22]
A. Dutt, M. Gu, and V. Rokhlin. 1996. Fast algorithms for polynomial interpolation, integration, and differentiation. SIAM Journal on Numerical Analysis 33, 5, 1689--1711.
[23]
S. Ebert and U. Heute. 1983. Accelerated design of linear or minimum phase FIR filters with a Chebyshev magnitude response. IEE Proceedings G: Electronic Circuits and Systems 130, 6, 267--270.
[24]
M. Embree and L. N. Trefethen. 1999. Green's functions for multiply connected domains via conformal mapping. SIAM Review 41, 4, 745--761.
[25]
M. S. Floater and K. Hormann. 2007. Barycentric rational interpolation with no poles and high rates of approximation. Numerische Mathematik 107, 2, 315--331.
[26]
L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. 2007. MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Transactions on Mathematical Software 33, 2, 13.
[27]
G. Guennebaud and B. Jacob. 2010. Eigen v3. Available at http://eigen.tuxfamily.org.
[28]
N. J. Higham. 2004. The numerical stability of barycentric Lagrange interpolation. IMA Journal of Numerical Analysis 24, 547--556.
[29]
L. J. Karam and J. H. McClellan. 1995. Complex Chebyshev approximation for FIR filter design. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 42, 3, 207--216.
[30]
L. J. Karam and J. H. McClellan. 1996. Design of optimal digital FIR filters with arbitrary magnitude and phase responses. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS'96), Vol. 2. 385--388.
[31]
D. M. Kodek. 2012. LLL algorithm and the optimal finite wordlength FIR design. IEEE Transactions on Signal Processing 60, 3, 1493--1498.
[32]
E. Levin and E. B. Saff. 2006. Potential theoretic tools in polynomial and rational approximation. In Harmonic Analysis and Rational Approximation. Lecture Notes in Control and Information Science, Vol. 327. Springer, 71--94.
[33]
W. F. Mascarenhas. 2014. The stability of barycentric interpolation at the Chebyshev points of the second kind. Numerische Mathematik 128, 2, 265--300.
[34]
W. F. Mascarenhas and A. Camargo. 2014. On the backward stability of the second barycentric formula for interpolation. Dolomites Research Notes on Approximation 7, 1--12.
[35]
J. H. McClellan and T. W. Parks. 2005. A personal history of the Parks-McClellan algorithm. IEEE Signal Processing Magazine 22, 2, 82--86.
[36]
J. H. McClellan, T. W. Parks, and L. Rabiner. 1973. A computer program for designing optimum FIR linear phase digital filters. IEEE Transactions on Audio and Electroacoustics 21, 6, 506--526.
[37]
J. M. Muller, N. Brisebarre, F. de Dinechin, C. P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres. 2009. Handbook of Floating-Point Arithmetic. Birkhäuser, Boston, MA.
[38]
A. V. Oppenheim and R. W. Schafer. 2010. Discrete-Time Signal Processing. Prentice Hall.
[39]
R. Pachón and L. N. Trefethen. 2009. Barycentric-Remez algorithms for best polynomial approximation in the Chebfun system. BIT Numerical Mathematics 49, 4, 721--741.
[40]
T. W. Parks and J. H. McClellan. 1972. Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Transactions on Circuit Theory 19, 2 (March 1972), 189--194.
[41]
D. Pelloni and F. Bonzanigo. 1980. On the design of high-order linear phase FIR filters. Digital Signal Processing 1, 3--10.
[42]
M. J. D. Powell. 1981. Approximation Theory and Methods. Cambridge University Press, Cambridge, MA.
[43]
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes: The Art of Scientific Computing (3rd ed.). Cambridge University Press, Cambridge, MA.
[44]
E. Z. Psarakis and G. V. Moustakides. 2003. A robust initialization scheme for the Remez exchange algorithm. IEEE Signal Processing Letters 10, 1, 1--3.
[45]
L. Rabiner, J. Kaiser, and R. W. Schafer. 1974. Some considerations in the design of multiband finite-impulse-response digital filters. IEEE Transactions on Acoustics, Speech, and Signal Processing 22, 6, 462--472.
[46]
H.-J. Rack and M. Reimer. 1982. The numerical stability of evaluation schemes for polynomials based on the Lagrange interpolation form. BIT Numerical Mathematics 22, 1, 101--107.
[47]
E. Remes. 1934. Sur le calcul effectif des polynômes d'approximation de tchebichef. Comptes Rendus Hebdomadaires Des séances De l'Académie Des Sciences 199, 337--340.
[48]
H. Rutishauser. 1976. Vorlesungen Über Numerische Mathematik. Birkhäuser Basel, Stuttgard. English translation, 1990. Lectures on Numerical Mathematics, W. Gautschi (Ed.). Birkhäuser, Boston, MA.
[49]
T. Saramäki. 1992. An efficient Remez-type algorithm for the design of optimum IIR filters with arbitrary partially constrained specifications. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS'92), Vol. 5. 2577--2580.
[50]
T. Saramäki. 1994. Generalizations of classical recursive digital filters and their design with the aid of a Remez-type algorithm. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS'94), Vol. 2. 549--552.
[51]
I. W. Selesnick. 1997. New exchange rules for IIR filter design. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'97), Vol. 3. 2209--2212.
[52]
I. W. Selesnick, M. Lang, and C. S. Burrus. 1994. Magnitude squared design of recursive filters with the Chebyshev norm using a constrained rational Remez algorithm. In Proceedings of the 6th IEEE Digital Signal Processing Workshop. 23--26.
[53]
J. Shen, G. Strang, and A. J. Wathen. 2001. The potential theory of several intervals and its applications. Applied Mathematics and Optimization 44, 1, 67--85.
[54]
D. J. Shpak and A. Antoniou. 1990. A generalized Remez method for the design of FIR digital filters. IEEE Transactions on Circuits and Systems 37, 2, 161--174.
[55]
A. Sommariva and M. Vianello. 2009. Computing approximate Fekete points by QR factorizations of Vandermonde matrices. Computers and Mathematics with Applications 57, 8, 1324--1336.
[56]
A. Sommariva and M. Vianello. 2010. Approximate Fekete points for weighted polynomial interpolation. Electronic Transactions on Numerical Analysis 37, 1--22.
[57]
G. Strang. 1999. The discrete cosine transform. SIAM Review 41, 1, 135--147.
[58]
L. N. Trefethen. 2013. Approximation Theory and Approximation Practice. SIAM.
[59]
L. Veidinger. 1960. On the numerical determination of the best approximation in the Chebyshev sense. Numerische Mathematik 2, 1, 99--105.
[60]
M. Webb, L. N. Trefethen, and P. Gonnet. 2012. Stability of barycentric interpolation formulas for extrapolation. SIAM Journal on Scientific Computing 34, 6, A3009--A3015.
[61]
P. Zahradnik and M. Vlcek. 2008. Robust analytical design of equiripple comb FIR filters. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS'08). 1128--1131.

Cited By

View all
  • (2023)Wrinkle Detection in Carbon Fiber-Reinforced Polymers Using Linear Phase FIR-Filtered Ultrasonic Array DataAerospace10.3390/aerospace1002018110:2(181)Online publication date: 15-Feb-2023
  • (2023)Design of Optimal Multiplierless FIR Filters With Minimal Number of AddersIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2022.317922142:2(658-671)Online publication date: Feb-2023
  • (2023)Automated Alzheimer’s Disease Diagnosis Using Norm Features Extracted from EEG Signals2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT)10.1109/ICCCNT56998.2023.10413583(1-6)Online publication date: 6-Jul-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 43, Issue 1
March 2017
202 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/2987591
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 August 2016
Accepted: 01 March 2016
Revised: 01 March 2016
Received: 01 March 2015
Published in TOMS Volume 43, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Barycentric interpolation
  2. Chebyshev approximation
  3. FIR filters
  4. Lebesgue constant
  5. colleague matrix
  6. minimax approximation

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • French National Agency for Research (ANR)
  • FastRelax

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)31
  • Downloads (Last 6 weeks)3
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Wrinkle Detection in Carbon Fiber-Reinforced Polymers Using Linear Phase FIR-Filtered Ultrasonic Array DataAerospace10.3390/aerospace1002018110:2(181)Online publication date: 15-Feb-2023
  • (2023)Design of Optimal Multiplierless FIR Filters With Minimal Number of AddersIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2022.317922142:2(658-671)Online publication date: Feb-2023
  • (2023)Automated Alzheimer’s Disease Diagnosis Using Norm Features Extracted from EEG Signals2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT)10.1109/ICCCNT56998.2023.10413583(1-6)Online publication date: 6-Jul-2023
  • (2023) Towards Machine-Efficient Rational L ∞ -Approximations of Mathematical Functions 2023 IEEE 30th Symposium on Computer Arithmetic (ARITH)10.1109/ARITH58626.2023.00029(119-126)Online publication date: 4-Sep-2023
  • (2023)Ultrasonic defect detection of high-density polyethylene pipe materials using FIR filtering and block-wise singular value decompositionUltrasonics10.1016/j.ultras.2023.107088134(107088)Online publication date: Sep-2023
  • (2023)Defect Characterization Method for Bridge Cables Based on Topology of Dynamical Reconstruction of Magnetostrictive Guided Wave Testing SignalsJournal of Nondestructive Evaluation10.1007/s10921-023-00940-242:2Online publication date: 28-Mar-2023
  • (2023)Arithmetic in the Design of Linear Time-Invariant FiltersApplication-Specific Arithmetic10.1007/978-3-031-42808-1_23(669-705)Online publication date: 23-Aug-2023
  • (2022)Automatic Detection of Mental Health Status using Alpha Subband of EEG Data2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)10.1109/MeMeA54994.2022.9856586(1-6)Online publication date: 22-Jun-2022
  • (2022)Epileptic seizure endorsement technique using DWT power spectrumThe Journal of Supercomputing10.1007/s11227-021-04196-378:6(8604-8624)Online publication date: 1-Apr-2022
  • (2022)FIR digital filter design based on improved artificial bee colony algorithmSoft Computing10.1007/s00500-022-07506-w26:24(13489-13507)Online publication date: 1-Oct-2022
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media