10.1145/2939672.2939785acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedings
research-article
Public Access

XGBoost: A Scalable Tree Boosting System

ABSTRACT

Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

References

  1. R. Bekkerman. The present and the future of the kdd cup competition: an outsider's perspective.Google ScholarGoogle Scholar
  2. R. Bekkerman, M. Bilenko, and J. Langford. Scaling Up Machine Learning: Parallel and Distributed Approaches. Cambridge University Press, New York, NY, USA, 2011. Google ScholarGoogle Scholar
  3. J. Bennett and S. Lanning. The netflix prize. In Proceedings of the KDD Cup Workshop 2007, pages 3--6, New York, Aug. 2007.Google ScholarGoogle Scholar
  4. L. Breiman. Random forests. Maching Learning, 45(1):5--32, Oct. 2001. Google ScholarGoogle Scholar
  5. C. Burges. From ranknet to lambdarank to lambdamart: An overview. Learning, 11:23--581, 2010.Google ScholarGoogle Scholar
  6. O. Chapelle and Y. Chang. Yahoo! Learning to Rank Challenge Overview. Journal of Machine Learning Research - W & CP, 14:1--24, 2011.Google ScholarGoogle Scholar
  7. T. Chen, H. Li, Q. Yang, and Y. Yu. General functional matrix factorization using gradient boosting. In Proceeding of 30th International Conference on Machine Learning (ICML'13), volume 1, pages 436--444, 2013.Google ScholarGoogle Scholar
  8. T. Chen, S. Singh, B. Taskar, and C. Guestrin. Efficient second-order gradient boosting for conditional random fields. In Proceeding of 18th Artificial Intelligence and Statistics Conference (AISTATS'15), volume 1, 2015.Google ScholarGoogle Scholar
  9. R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9:1871--1874, 2008. Google ScholarGoogle Scholar
  10. J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5):1189--1232, 2001.Google ScholarGoogle Scholar
  11. J. Friedman. Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4):367--378, 2002. Google ScholarGoogle Scholar
  12. J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28(2):337--407, 2000.Google ScholarGoogle Scholar
  13. J. H. Friedman and B. E. Popescu. Importance sampled learning ensembles, 2003.Google ScholarGoogle Scholar
  14. M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries. In Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, pages 58--66, 2001. Google ScholarGoogle Scholar
  15. X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, and J. Q. n. Candela. Practical lessons from predicting clicks on ads at facebook. In Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, ADKDD'14, 2014. Google ScholarGoogle Scholar
  16. P. Li. Robust Logitboost and adaptive base class (ABC) Logitboost. In Proceedings of the Twenty-Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI'10), pages 302--311, 2010.Google ScholarGoogle Scholar
  17. P. Li, Q. Wu, and C. J. Burges. Mcrank: Learning to rank using multiple classification and gradient boosting. In Advances in Neural Information Processing Systems 20, pages 897--904. 2008. Google ScholarGoogle Scholar
  18. X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar. MLlib: Machine learning in apache spark. Journal of Machine Learning Research, 17(34):1--7, 2016. Google ScholarGoogle Scholar
  19. B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo. Planet: Massively parallel learning of tree ensembles with mapreduce. Proceeding of VLDB Endowment, 2(2):1426--1437, Aug. 2009. Google ScholarGoogle Scholar
  20. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825--2830, 2011. Google ScholarGoogle Scholar
  21. G. Ridgeway. Generalized Boosted Models: A guide to the gbm package.Google ScholarGoogle Scholar
  22. S. Tyree, K. Weinberger, K. Agrawal, and J. Paykin. Parallel boosted regression trees for web search ranking. In Proceedings of the 20th international conference on World wide web, pages 387--396. ACM, 2011. Google ScholarGoogle Scholar
  23. J. Ye, J.-H. Chow, J. Chen, and Z. Zheng. Stochastic gradient boosted distributed decision trees. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM '09. Google ScholarGoogle Scholar
  24. Q. Zhang and W. Wang. A fast algorithm for approximate quantiles in high speed data streams. In Proceedings of the 19th International Conference on Scientific and Statistical Database Management, 2007. Google ScholarGoogle Scholar
  25. T. Zhang and R. Johnson. Learning nonlinear functions using regularized greedy forest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(5), 2014.Google ScholarGoogle Scholar

Supplemental Material

kdd2016_chen_boosting_system_01-acm.mp4

Index Terms

  1. XGBoost

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Article Metrics

        • Downloads (Last 12 months)15,763
        • Downloads (Last 6 weeks)1,436

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader
      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!