Abstract
We present a novel technique that produces two-dimensional low-discrepancy (LD) blue noise point sets for sampling. Using one-dimensional binary van der Corput sequences, we construct two-dimensional LD point sets, and rearrange them to match a target spectral profile while preserving their low discrepancy. We store the rearrangement information in a compact lookup table that can be used to produce arbitrarily large point sets. We evaluate our technique and compare it to the state-of-the-art sampling approaches.
Supplemental Material
Available for Download
Supplemental file.
- Ahmed, A. G. M., Huang, H., and Deussen, O. 2015. AA patterns for point sets with controlled spectral properties. ACM Trans. Graph. 34, 6, 212:1--212:8. Google Scholar
Digital Library
- Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd's method. ACM Trans. Graph. 28, 3, 86:1--8. Google Scholar
Digital Library
- Chen, Z., Yuan, Z., Choi, Y.-K., Liu, L., and Wang, W. 2012. Variational blue noise sampling. IEEE Transactions on Visualization and Computer Graphics 18, 10, 1784--1796. Google Scholar
Digital Library
- Cohen, M., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. ACM Trans. Graphics 22, 3, 287--294. Google Scholar
Digital Library
- Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 51--72. Google Scholar
Digital Library
- Dammertz, S. 2009. Rank-1 lattices in computer graphics. University of Ulm, PhD Thesis.Google Scholar
- de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6, 171:1--171:11. Google Scholar
Digital Library
- Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. In ACM SIGGRAPH, 69--78. Google Scholar
Digital Library
- Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. ACM Trans. Graph. 25, 3, 503--508. Google Scholar
Digital Library
- Durand, F. 2011. A frequency analysis of Monte-Carlo and other numerical integration schemes. MIT CSAIL Tech. rep. TR-2011-052.Google Scholar
- Ebeida, M. S., Davidson, A. A., Patney, A., Knupp, P. M., Mitchell, S. A., and Owens, J. D. 2011. Efficient maximal Poisson-disk sampling. ACM Trans. Graph. 30, 49:1--49:12. Google Scholar
Digital Library
- Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. 30, 3, 48:1--48:12. Google Scholar
Digital Library
- Faure, H. 1982. Discrépances de suites associées à un système de numération (en dimension s). Acta Arithmetica 41, 4, 337--351.Google Scholar
Cross Ref
- Halton, J. H. 1960. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik 2, 1, 84--90. Google Scholar
Digital Library
- Hammersley, J. M. 1960. Monte Carlo methods for solving multivariable problems. Annals of the New York Academy of Sciences 86, 3, 844--874.Google Scholar
Cross Ref
- Heck, D., Schlömer, T., and Deussen, O. 2013. Blue noise sampling with controlled aliasing. ACM Trans. Graph. 32, 3, 25:1--25:12. Google Scholar
Digital Library
- Hlawka, E. 1961. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Annali di Matematica Pura ed Applicata 54, 1, 325--333.Google Scholar
- Jiang, M., Zhou, Y., Wang, R., Southern, R., and Zhang, J. J. 2015. Blue noise sampling using an sph-based method. ACM Trans. Graph. 34, 6, 211:1--211:11. Google Scholar
Digital Library
- Keller, A. 2004. Stratification by rank-1 lattices. Monte Carlo and Quasi-Monte Carlo Methods 2002, 299--313.Google Scholar
- Keller, A. 2012. Quasi-Monte Carlo image synthesis in a nutshell. Monte Carlo and Quasi-Monte Carlo Methods, 213--252. Google Scholar
Digital Library
- Kensler, A. 2013. Correlated multi-jittered sampling. Pixar Technical Memo 13-01 7, 86--112.Google Scholar
- Kollig, T., and Keller, A. 2002. Efficient multidimensional sampling. In Computer Graphics Forum, vol. 21, 557--563.Google Scholar
Cross Ref
- Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang tiles for real-time blue noise. ACM Trans. Graph. 25, 3, 509--518. Google Scholar
Digital Library
- Kuhn, H. W. 1955. The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly 2, 83--97.Google Scholar
Cross Ref
- Kuipers, L., and Niederreiter, H. 1974. Uniform Distribution of Sequences. Pure and applied mathematics. John Wiley & Sons, New York.Google Scholar
- Lagae, A., and Dutré, P. 2006. An alternative for Wang tiles: Colored edges versus colored corners. ACM Trans. Graph. 25, 4, 1442--1459. Google Scholar
Digital Library
- Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 27, 1, 114--129.Google Scholar
Cross Ref
- Lemieux, C. 2009. Monte Carlo and Quasi Monte Carlo Sampling. Springer-Verlag New York.Google Scholar
- Lloyd, S. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 2, 129--137. Google Scholar
Digital Library
- Matoušek, J. 1998. On the L2-discrepancy for anchored boxes. Journal of Complexity 14, 4, 527--556. Google Scholar
Digital Library
- McCool, M., and Fiume, E. 1992. Hierarchical Poisson disk sampling distributions. In Proc. Graphics Interface '92, 94--105. Google Scholar
Digital Library
- Mitchell, D. P., and Netravali, A. N. 1988. Reconstruction filters in computer-graphics. In ACM Siggraph Computer Graphics, vol. 22, ACM, 221--228. Google Scholar
Digital Library
- Mitchell, D. 1991. Spectrally optimal sampling for distributed ray tracing. In Proc. SIGGRAPH '91, vol. 25, 157--164. Google Scholar
Digital Library
- Niederreiter, H. 1988. Low-discrepancy and low-dispersion sequences. Journal of Number Theory 30, 1, 51--70.Google Scholar
Cross Ref
- Niederreiter, H. 1992. Random Number Generation and quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. Google Scholar
Digital Library
- Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23, 3, 488--495. Google Scholar
Digital Library
- Ostromoukhov, V. 2007. Sampling with polyominoes. ACM Trans. Graph. 26, 3, 78:1--78:6. Google Scholar
Digital Library
- Owen, A. B. 1995. Randomly permuted (t,m,s)-nets and (t, s)-sequences. MCQMC in Scientific Computing. Lecture Notes in Statistics, Vol. 106, 299--317.Google Scholar
Cross Ref
- Owen, A. 2003. Variance and discrepancy with alternative scrambling. ACM Trans Model Comput Simul 13, 363--378. Google Scholar
Digital Library
- Öztireli, A. C., and Gross, M. 2012. Analysis and synthesis of point distributions based on pair correlation. ACM Trans. Graph. 31, 6, 174:1--174:6. Google Scholar
Digital Library
- Pharr, M., and Humphreys, G. 2010. Physically Based Rendering, Second Edition: From Theory To Implementation, 2nd ed. Morgan Kaufmann Publishers Inc. Google Scholar
Digital Library
- Pilleboue, A., Singh, G., Coeurjolly, D., Kazhdan, M., and Ostromoukhov, V. 2015. Variance analysis for Monte Carlo integration. ACM Trans. Graph. 34, 4, 124:1--124:14. Google Scholar
Digital Library
- Ramamoorthi, R., Anderson, J., Meyer, M., and Nowrouzezahrai, D. 2012. A theory of monte carlo visibility sampling. ACM Trans. Graph. 31, 5, 121. Google Scholar
Digital Library
- Reinert, B., Ritschel, T., Seidel, H.-P., and Georgiev, I. 2016. Projective blue-noise sampling. Computer Graphics Forum 35, 1, 285--295.Google Scholar
Digital Library
- Saka, Y., Gunzburger, M., and Burkardt, J. 2007. Latinized, improved LHS, and CVT point sets in hypercubes. International Journal of Numerical Analysis and Modeling 4, 3-4, 729--743.Google Scholar
- Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Symp. on High Performance Graphics, 135--142. Google Scholar
Digital Library
- Schmaltz, C., Gwosdek, P., Bruhn, A., and Weickert, J. 2010. Electrostatic halftoning. Comput. Graph. Forum 29, 8, 2313--2327.Google Scholar
Cross Ref
- Shirley, K. C. P., and Wang, C. 1994. Multi-jittered sampling. Graphics Gems IV 4, 370. Google Scholar
Digital Library
- Shirley, P. 1991. Discrepancy as a quality measure for sample distributions. In Proc. Eurographics '91, 183--194.Google Scholar
- Sobol', I. M. 1967. On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 7, 4, 784--802.Google Scholar
- Tezuka, S. 1994. A generalization of Faure sequences and its efficient implementation. Tech. rep., RT0105, IBM Research, Tokyo.Google Scholar
- Torralba, A., and Oliva, A. 2003. Statistics of natural image categories. Network (Bristol, England) 14, 3, 391--412.Google Scholar
- Ulichney, R. 1988. Dithering with blue noise. Proceedings of the IEEE 76, 1, 56--79.Google Scholar
Cross Ref
- van der Corput, J. 1935. Verteilungsfunktionen. Proceedings of the Nederlandse Akademie van Wetenschappen, 38, 813--821.Google Scholar
- Wachtel, F., Pilleboue, A., Coeurjolly, D., Breeden, K., Singh, G., Cathelin, G., de Goes, F., Desbrun, M., and Ostromoukhov, V. 2014. Fast tile-based adaptive sampling with user-specified Fourier spectra. ACM Trans. Graph. 33, 4, 56:1--56:11. Google Scholar
Digital Library
- Wei, L.-Y., and Wang, R. 2011. Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30, 4, 50:1--50:10. Google Scholar
Digital Library
- Xu, Y., Liu, L., Gotsman, C., and Gortler, S. J. 2011. Capacity-constrained Delaunay triangulation for point distributions. Computers & Graphics 35, 3, 510 -- 516. Google Scholar
Digital Library
- Yuksel, C. 2015. Sample elimination for generating Poisson disk sample sets. Comput. Graph. Forum 34, 2, 25--32. Google Scholar
Digital Library
- Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point sampling with general noise spectrum. ACM Trans. Graph. 31, 4, 76:1--76:11. Google Scholar
Digital Library
Index Terms
Low-discrepancy blue noise sampling
Recommendations
Screen-space blue-noise diffusion of monte carlo sampling error via hierarchical ordering of pixels
We present a novel technique for diffusing Monte Carlo sampling error as a blue noise in screen space. We show that automatic diffusion of sampling error can be achieved by ordering the pixels in a way that preserves locality, such as Morton's Z-...
Blue-noise dithered sampling
SIGGRAPH '16: ACM SIGGRAPH 2016 TalksThe visual fidelity of a Monte Carlo rendered image depends not only on the magnitude of the pixel estimation error but also on its distribution over the image. To this end, state-of-the-art methods use high-quality stratified sampling patterns, which ...
An adaptive point sampler on a regular lattice
We present a framework to distribute point samples with controlled spectral properties using a regular lattice of tiles with a single sample per tile. We employ a word-based identification scheme to identify individual tiles in the lattice. Our scheme ...





Comments