skip to main content
research-article

Low-discrepancy blue noise sampling

Published:05 December 2016Publication History
Skip Abstract Section

Abstract

We present a novel technique that produces two-dimensional low-discrepancy (LD) blue noise point sets for sampling. Using one-dimensional binary van der Corput sequences, we construct two-dimensional LD point sets, and rearrange them to match a target spectral profile while preserving their low discrepancy. We store the rearrangement information in a compact lookup table that can be used to produce arbitrarily large point sets. We evaluate our technique and compare it to the state-of-the-art sampling approaches.

Skip Supplemental Material Section

Supplemental Material

References

  1. Ahmed, A. G. M., Huang, H., and Deussen, O. 2015. AA patterns for point sets with controlled spectral properties. ACM Trans. Graph. 34, 6, 212:1--212:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd's method. ACM Trans. Graph. 28, 3, 86:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chen, Z., Yuan, Z., Choi, Y.-K., Liu, L., and Wang, W. 2012. Variational blue noise sampling. IEEE Transactions on Visualization and Computer Graphics 18, 10, 1784--1796. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cohen, M., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. ACM Trans. Graphics 22, 3, 287--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dammertz, S. 2009. Rank-1 lattices in computer graphics. University of Ulm, PhD Thesis.Google ScholarGoogle Scholar
  7. de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6, 171:1--171:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. In ACM SIGGRAPH, 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. ACM Trans. Graph. 25, 3, 503--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Durand, F. 2011. A frequency analysis of Monte-Carlo and other numerical integration schemes. MIT CSAIL Tech. rep. TR-2011-052.Google ScholarGoogle Scholar
  11. Ebeida, M. S., Davidson, A. A., Patney, A., Knupp, P. M., Mitchell, S. A., and Owens, J. D. 2011. Efficient maximal Poisson-disk sampling. ACM Trans. Graph. 30, 49:1--49:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. 30, 3, 48:1--48:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Faure, H. 1982. Discrépances de suites associées à un système de numération (en dimension s). Acta Arithmetica 41, 4, 337--351.Google ScholarGoogle ScholarCross RefCross Ref
  14. Halton, J. H. 1960. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik 2, 1, 84--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hammersley, J. M. 1960. Monte Carlo methods for solving multivariable problems. Annals of the New York Academy of Sciences 86, 3, 844--874.Google ScholarGoogle ScholarCross RefCross Ref
  16. Heck, D., Schlömer, T., and Deussen, O. 2013. Blue noise sampling with controlled aliasing. ACM Trans. Graph. 32, 3, 25:1--25:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hlawka, E. 1961. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Annali di Matematica Pura ed Applicata 54, 1, 325--333.Google ScholarGoogle Scholar
  18. Jiang, M., Zhou, Y., Wang, R., Southern, R., and Zhang, J. J. 2015. Blue noise sampling using an sph-based method. ACM Trans. Graph. 34, 6, 211:1--211:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Keller, A. 2004. Stratification by rank-1 lattices. Monte Carlo and Quasi-Monte Carlo Methods 2002, 299--313.Google ScholarGoogle Scholar
  20. Keller, A. 2012. Quasi-Monte Carlo image synthesis in a nutshell. Monte Carlo and Quasi-Monte Carlo Methods, 213--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kensler, A. 2013. Correlated multi-jittered sampling. Pixar Technical Memo 13-01 7, 86--112.Google ScholarGoogle Scholar
  22. Kollig, T., and Keller, A. 2002. Efficient multidimensional sampling. In Computer Graphics Forum, vol. 21, 557--563.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang tiles for real-time blue noise. ACM Trans. Graph. 25, 3, 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kuhn, H. W. 1955. The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly 2, 83--97.Google ScholarGoogle ScholarCross RefCross Ref
  25. Kuipers, L., and Niederreiter, H. 1974. Uniform Distribution of Sequences. Pure and applied mathematics. John Wiley & Sons, New York.Google ScholarGoogle Scholar
  26. Lagae, A., and Dutré, P. 2006. An alternative for Wang tiles: Colored edges versus colored corners. ACM Trans. Graph. 25, 4, 1442--1459. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 27, 1, 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lemieux, C. 2009. Monte Carlo and Quasi Monte Carlo Sampling. Springer-Verlag New York.Google ScholarGoogle Scholar
  29. Lloyd, S. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 2, 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Matoušek, J. 1998. On the L2-discrepancy for anchored boxes. Journal of Complexity 14, 4, 527--556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. McCool, M., and Fiume, E. 1992. Hierarchical Poisson disk sampling distributions. In Proc. Graphics Interface '92, 94--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Mitchell, D. P., and Netravali, A. N. 1988. Reconstruction filters in computer-graphics. In ACM Siggraph Computer Graphics, vol. 22, ACM, 221--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mitchell, D. 1991. Spectrally optimal sampling for distributed ray tracing. In Proc. SIGGRAPH '91, vol. 25, 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Niederreiter, H. 1988. Low-discrepancy and low-dispersion sequences. Journal of Number Theory 30, 1, 51--70.Google ScholarGoogle ScholarCross RefCross Ref
  35. Niederreiter, H. 1992. Random Number Generation and quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23, 3, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ostromoukhov, V. 2007. Sampling with polyominoes. ACM Trans. Graph. 26, 3, 78:1--78:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Owen, A. B. 1995. Randomly permuted (t,m,s)-nets and (t, s)-sequences. MCQMC in Scientific Computing. Lecture Notes in Statistics, Vol. 106, 299--317.Google ScholarGoogle ScholarCross RefCross Ref
  39. Owen, A. 2003. Variance and discrepancy with alternative scrambling. ACM Trans Model Comput Simul 13, 363--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Öztireli, A. C., and Gross, M. 2012. Analysis and synthesis of point distributions based on pair correlation. ACM Trans. Graph. 31, 6, 174:1--174:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering, Second Edition: From Theory To Implementation, 2nd ed. Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Pilleboue, A., Singh, G., Coeurjolly, D., Kazhdan, M., and Ostromoukhov, V. 2015. Variance analysis for Monte Carlo integration. ACM Trans. Graph. 34, 4, 124:1--124:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ramamoorthi, R., Anderson, J., Meyer, M., and Nowrouzezahrai, D. 2012. A theory of monte carlo visibility sampling. ACM Trans. Graph. 31, 5, 121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Reinert, B., Ritschel, T., Seidel, H.-P., and Georgiev, I. 2016. Projective blue-noise sampling. Computer Graphics Forum 35, 1, 285--295.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Saka, Y., Gunzburger, M., and Burkardt, J. 2007. Latinized, improved LHS, and CVT point sets in hypercubes. International Journal of Numerical Analysis and Modeling 4, 3-4, 729--743.Google ScholarGoogle Scholar
  46. Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Symp. on High Performance Graphics, 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Schmaltz, C., Gwosdek, P., Bruhn, A., and Weickert, J. 2010. Electrostatic halftoning. Comput. Graph. Forum 29, 8, 2313--2327.Google ScholarGoogle ScholarCross RefCross Ref
  48. Shirley, K. C. P., and Wang, C. 1994. Multi-jittered sampling. Graphics Gems IV 4, 370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Shirley, P. 1991. Discrepancy as a quality measure for sample distributions. In Proc. Eurographics '91, 183--194.Google ScholarGoogle Scholar
  50. Sobol', I. M. 1967. On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 7, 4, 784--802.Google ScholarGoogle Scholar
  51. Tezuka, S. 1994. A generalization of Faure sequences and its efficient implementation. Tech. rep., RT0105, IBM Research, Tokyo.Google ScholarGoogle Scholar
  52. Torralba, A., and Oliva, A. 2003. Statistics of natural image categories. Network (Bristol, England) 14, 3, 391--412.Google ScholarGoogle Scholar
  53. Ulichney, R. 1988. Dithering with blue noise. Proceedings of the IEEE 76, 1, 56--79.Google ScholarGoogle ScholarCross RefCross Ref
  54. van der Corput, J. 1935. Verteilungsfunktionen. Proceedings of the Nederlandse Akademie van Wetenschappen, 38, 813--821.Google ScholarGoogle Scholar
  55. Wachtel, F., Pilleboue, A., Coeurjolly, D., Breeden, K., Singh, G., Cathelin, G., de Goes, F., Desbrun, M., and Ostromoukhov, V. 2014. Fast tile-based adaptive sampling with user-specified Fourier spectra. ACM Trans. Graph. 33, 4, 56:1--56:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Wei, L.-Y., and Wang, R. 2011. Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30, 4, 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Xu, Y., Liu, L., Gotsman, C., and Gortler, S. J. 2011. Capacity-constrained Delaunay triangulation for point distributions. Computers & Graphics 35, 3, 510 -- 516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Yuksel, C. 2015. Sample elimination for generating Poisson disk sample sets. Comput. Graph. Forum 34, 2, 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point sampling with general noise spectrum. ACM Trans. Graph. 31, 4, 76:1--76:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Low-discrepancy blue noise sampling

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 35, Issue 6
      November 2016
      1045 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2980179
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 December 2016
      Published in tog Volume 35, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader