skip to main content
research-article

Stair blue noise sampling

Published:05 December 2016Publication History
Skip Abstract Section

Abstract

A common solution to reducing visible aliasing artifacts in image reconstruction is to employ sampling patterns with a blue noise power spectrum. These sampling patterns can prevent discernible artifacts by replacing them with incoherent noise. Here, we propose a new family of blue noise distributions, Stair blue noise, which is mathematically tractable and enables parameter optimization to obtain the optimal sampling distribution. Furthermore, for a given sample budget, the proposed blue noise distribution achieves a significantly larger alias-free low-frequency region compared to existing approaches, without introducing visible artifacts in the mid-frequencies. We also develop a new sample synthesis algorithm that benefits from the use of an unbiased spatial statistics estimator and efficient optimization strategies.

References

  1. Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained Point Distributions: A Variant of Lloyd's Method. ACM Trans. Graph. 28, 3 (July), 86:1--86:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bridson, R. 2007. Fast Poisson Disk Sampling in Arbitrary Dimensions. In ACM SIGGRAPH 2007 Sketches, ACM, New York, NY, USA, SIGGRAPH '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cook, R. L. 1986. Stochastic Sampling in Computer Graphics. ACM Trans. Graph. 5, 1 (Jan.), 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue Noise Through Optimal Transport. ACM Trans. Graph. 31, 6 (Nov.), 171:1--171:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dunbar, D., and Humphreys, G. 2006. A Spatial Data Structure for Fast Poisson-disk Sample Generation. ACM Trans. Graph. 25, 3 (July), 503--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ebeida, M. S., Davidson, A. A., Patney, A., Knupp, P. M., Mitchell, S. A., and Owens, J. D. 2011. Efficient Maximal Poisson-disk Sampling. ACM Trans. Graph. 30, 4 (July), 49:1--49:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ebeida, M. S., Mitchell, S. A., Patney, A., Davidson, A. A., and Owens, J. D. 2012. A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions. Computer Graphics Forum 31, 2pt4, 785--794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ebeida, M. S., Patney, A., Mitchell, S. A., Dalbey, K. R., Davidson, A. A., and Owens, J. D. 2014. K-d Darts: Sampling by K-dimensional Flat Searches. ACM Trans. Graph. 33, 1 (Feb.), 3:1--3:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fattal, R. 2011. Blue-noise Point Sampling Using Kernel Density Model. ACM Trans. Graph. 30, 4 (July), 48:1--48:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gamito, M. N., and Maddock, S. C. 2009. Accurate Multi-dimensional Poisson-disk Sampling. ACM Trans. Graph. 29, 1 (Dec.), 8:1--8:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Heck, D., Schlömer, T., and Deussen, O. 2013. Blue Noise Sampling with Controlled Aliasing. ACM Trans. Graph. 32, 3 (July), 25:1--25:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. 2008. Statistical Analysis and Modelling of Spatial Point Patterns (Statistics in Practice), 1 ed. Wiley-Interscience, Mar.Google ScholarGoogle Scholar
  13. Ip, C. Y., Yalçin, M. A., Luebke, D., and Varshney, A. 2013. PixelPie: Maximal Poisson-disk Sampling with Rasterization. In Proceedings of the 5th High-Performance Graphics Conference, ACM, New York, NY, USA, HPG '13, 17--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jiang, M., Zhou, Y., Wang, R., Southern, R., and Zhang, J. J. 2015. Blue Noise Sampling Using an SPH-based Method. ACM Trans. Graph. 34, 6 (Oct.), 211:1--211:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kailkhura, B., Thiagarajan, J. J., Bremer, P. T., and Varshney, P. K. 2016. Theoretical guarantees for poisson disk sampling using pair correlation function. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2589--2593.Google ScholarGoogle Scholar
  16. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang Tiles for Real-time Blue Noise. ACM Trans. Graph. 25, 3 (July), 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lagae, A., and Dutre, P. 2008. A Comparison of Methods for Generating Poisson Disk Distributions. Computer Graphics Forum 27, 1, 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  18. Lloyd, S. 1982. Least Squares Quantization in PCM. IEEE Trans. Inf. Theor. 28, 2 (Sept.), 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Öztireli, A. C., and Gross, M. 2012. Analysis and Synthesis of Point Distributions Based on Pair Correlation. ACM Trans. Graph. 31, 6 (Nov.), 170:1--170:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pilleboue, A., Singh, G., Coeurjolly, D., Kazhdan, M., and Ostromoukhov, V. 2015. Variance Analysis for Monte Carlo Integration. ACM Trans. Graph. 34, 4 (July), 124:1--124:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point Optimized Point Sets with Maximized Minimum Distance. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, ACM, New York, NY, USA, HPG '11, 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Stoyan, D., Bertram, U., and Wendrock, H. 1993. Estimation variances for estimators of product densities and pair correlation functions of planar point processes. Annals of the Institute of Statistical Mathematics 45, 2, 211--221.Google ScholarGoogle ScholarCross RefCross Ref
  23. Uche, O., Stillinger, F., and Torquato, S. 2006. On the realizability of pair correlation functions. Physica A: Statistical Mechanics and its Applications 360, 1, 21 -- 36.Google ScholarGoogle Scholar
  24. Ulichney, R. A. 1988. Dithering with blue noise. Proceedings of the IEEE 76, 1 (Jan), 56--79.Google ScholarGoogle ScholarCross RefCross Ref
  25. Wachtel, F., Pilleboue, A., Coeurjolly, D., Breeden, K., Singh, G., Cathelin, G., de Goes, F., Desbrun, M., and Ostromoukhov, V. 2014. Fast Tile-based Adaptive Sampling with User-specified Fourier Spectra. ACM Trans. Graph. 33, 4 (July), 56:1--56:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wei, L.-Y. 2008. Parallel Poisson Disk Sampling. ACM Trans. Graph. 27, 3 (Aug.), 20:1--20:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wei, L.-Y. 2010. Multi-class Blue Noise Sampling. ACM Trans. Graph. 29, 4 (July), 79:1--79:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point Sampling with General Noise Spectrum. ACM Trans. Graph. 31, 4 (July), 76:1--76:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Stair blue noise sampling

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 35, Issue 6
          November 2016
          1045 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2980179
          Issue’s Table of Contents

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 5 December 2016
          Published in tog Volume 35, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader