10.1145/3055399.3055410acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article
Public Access

Uniform sampling through the Lovasz local lemma

Published:19 June 2017Publication History

ABSTRACT

We propose a new algorithmic framework, called “partial rejection sampling”, to draw samples exactly from a product distribution, conditioned on none of a number of bad events occurring. Our framework builds (perhaps surprising) new connections between the variable framework of the Lovász Local Lemma and some clas- sical sampling algorithms such as the “cycle-popping” algorithm for rooted spanning trees by Wilson. Among other applications, we discover new algorithms to sample satisfying assignments of k-CNF formulas with bounded variable occurrences.

Skip Supplemental Material Section

Supplemental Material

d2_4b_1.mp4

References

  1. Dimitris Achlioptas and Fotis Iliopoulos. 2016. Random Walks That Find Perfect Objects and the Lovász Local Lemma. J. ACM 63, 3 (2016), 22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Noga Alon. 1991. A Parallel Algorithmic Version of the Local Lemma. Random Struct. Algorithms 2, 4 (1991), 367–378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. József Beck. 1991.Google ScholarGoogle Scholar
  4. An Algorithmic Approach to the Lovász Local Lemma. I. Random Struct. Algorithms 2, 4 (1991), 343–366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Daniel Štefankovič. 2016. Approximation via Correlation Decay When Strong Spatial Mixing Fails. In ICALP, 45:1–13.Google ScholarGoogle Scholar
  6. Magnus Bordewich, Martin E. Dyer, and Marek Karpinski. 2006. Stopping Times, Metrics and Approximate Counting. In ICALP. 108–119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Russ Bubley and Martin E. Dyer. 1997. Graph Orientations with No Sink and an Approximation for a Hard Case of #SAT. In SODA. 248–257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Henry Cohn, Robin Pemantle, and James G. Propp. 2002. Generating a Random Sink-free Orientation in Quadratic Time. Electr. J. Comb. 9, 1 (2002).Google ScholarGoogle Scholar
  9. Artur Czumaj and Christian Scheideler. 2000. Coloring nonuniform hypergraphs: A new algorithmic approach to the general Lovász Local Lemma. Random Struct. Algorithms 17, 3-4 (2000), 213–237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Paul Erdős and László Lovász. 1975. Problems and results on 3-chromatic hypergraphs and some related questions. Infinite and finite sets, volume 10 of Colloquia Mathematica Societatis János Bolyai (1975), 609–628.Google ScholarGoogle Scholar
  11. Weiming Feng, Yuxin Sun, and Yitong Yin. 2017. What can be sampled locally? CoRR abs/1702.00142 (2017).Google ScholarGoogle Scholar
  12. Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. 2016. Inapproximability of the Partition Function for the Antiferromagnetic Ising and Hard-Core Models. Comb. Probab. Comput. 25, 4 (2016), 500–559.Google ScholarGoogle ScholarCross RefCross Ref
  13. Geoffrey R. Grimmett and David R. Stirzaker. 2001.Google ScholarGoogle Scholar
  14. Probability and random processes (third ed.). Oxford University Press, New York. xii+596 pages. STOC’17, June 2017, Montreal, Canada Heng Guo, Mark Jerrum, and Jingcheng LiuGoogle ScholarGoogle Scholar
  15. Heng Guo, Mark Jerrum, and Jingcheng Liu. 2016. Uniform Sampling through the Lovász Local Lemma. CoRR abs/1611.01647 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. 2011. New Constructive Aspects of the Lovász Local Lemma. J. ACM 58, 6 (2011), 28:1–28:28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. David G. Harris and Aravind Srinivasan. 2013. Constraint Satisfaction, Packet Routing, and the Lovász Local Lemma. In STOC. 685–694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. David G. Harris and Aravind Srinivasan. 2013. The Moser-Tardos Framework with Partial Resampling. In FOCS. 469–478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. David G. Harris and Aravind Srinivasan. 2014. A constructive algorithm for the Lovász Local Lemma on permutations. In SODA. 907–925. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nicholas J. A. Harvey and Jan Vondrák. 2015. An Algorithmic Proof of the Lovász Local Lemma via Resampling Oracles. In FOCS. 1327–1346. Full version available at abs/1504.02044. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jonathan Hermon, Allan Sly, and Yumeng Zhang. 2016. Rapid Mixing of Hypergraph Independent Set. CoRR abs/1610.07999 (2016).Google ScholarGoogle Scholar
  22. Kashyap Babu Rao Kolipaka and Mario Szegedy. 2011. Moser and Tardos meet Lovász. In STOC. 235–244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jingcheng Liu and Pinyan Lu. 2015.Google ScholarGoogle Scholar
  24. FPTAS for Counting Monotone CNF. In SODA. 1531–1548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ankur Moitra. 2016.Google ScholarGoogle Scholar
  26. Approximate Counting, the Lovász Local Lemma and Inference in Graphical Models. CoRR abs/1610.04317 (2016). STOC 2017, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Michael Molloy and Bruce A. Reed. 1998. Further Algorithmic Aspects of the Local Lemma. In STOC. 524–529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Robin A. Moser and Gábor Tardos. 2010. A constructive proof of the general Lovász Local Lemma. J. ACM 57, 2 (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. James G. Propp and David B. Wilson. 1996. Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithms 9, 1-2 (1996), 223–252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. James G. Propp and David B. Wilson. 1998.Google ScholarGoogle Scholar
  31. How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph. J. Algorithms 27, 2 (1998), 170–217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. James B. Shearer. 1985.Google ScholarGoogle Scholar
  33. On a problem of Spencer. Combinatorica 5, 3 (1985), 241–245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Allan Sly and Nike Sun. 2014.Google ScholarGoogle Scholar
  35. The computational hardness of counting in two-spin models on d-regular graphs. Ann. Probab. 42, 6 (2014), 2383–2416.Google ScholarGoogle Scholar
  36. Aravind Srinivasan. 2008. Improved algorithmic versions of the Lovász Local Lemma. In SODA. 611–620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Dror Weitz. 2006. Counting independent sets up to the tree threshold. In STOC. 140–149. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Uniform sampling through the Lovasz local lemma

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        STOC 2017: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
        June 2017
        1268 pages
        ISBN:9781450345286
        DOI:10.1145/3055399

        Copyright © 2017 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 June 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader
      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!