skip to main content
10.1145/3071178.3071268acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article
Public Access

Protein design by multiobjective optimization: evolutionary and non-evolutionary approaches

Published:01 July 2017Publication History

ABSTRACT

Traditional simulation-based protein design considers energy minimization of candidate conformations as a singleobjective combinatorial optimization problem. In this paper we consider a challenging protein design problem, producing twelve protein species based on collagen that uniquely assort into four groups of three: a problem defined herein as a 4-level heterotrimer. We formulate a bi-objective combinatorial minimization problem that targets both stability and specificity of the 4-level heterotrimer. In order to approximate its Pareto frontier, we utilize both evolutionary and non-evolutionary approaches, operating in either Pareto or aggregation fashions. Our practical observations suggest that the SMS-EMOA with Evolution Strategies' operators is more effective than standard heuristics deployed in computational protein design, such as Simulated Annealing, Replica Exchange or the Canonical Genetic Algorithm. We investigate the attained Pareto optimal sets using Barrier Tree analysis, aiming to provide insights into the chemical search-space, as well as to explain the observed algorithmic trends. In particular, we identify Replica Exchange as a promising non-evolutionary technique for this problem class, due to its efficient exploration capabilities. Overall, a common high-level protocol for simultaneous landscape analysis of evolutionary and non-evolutionary search methodologies is put forward for the first time.

Skip Supplemental Material Section

Supplemental Material

References

  1. Thomas Bäck. 1996. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J Bella, M Eaton, B Brodsky, and HM Berman. 1994. Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 266, 5182 (1994), 75--81.Google ScholarGoogle Scholar
  3. Nicola Beume, Boris Naujoks, and Michael Emmerich. 2007. SMS-EMOA: Multiobjective Selection Based on Dominated Hypervolume. European Journal of Operational Research 181 (2007), 1653--1669.Google ScholarGoogle ScholarCross RefCross Ref
  4. F. Calvo. 2009. Non-genetic global optimization methods in molecular science: An overview. Computational Materials Science 45, 1 (2009), 8 -- 15.Google ScholarGoogle ScholarCross RefCross Ref
  5. David E. Clark (Ed.). 2000. Evolutionary Algorithms in Molecular Design. Willey-VCH, Weinheim. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Indraneel Das and John Dennis. 1997. A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multucriteria optimization problems. Structural Optimization 14 (1997), 63--69.Google ScholarGoogle ScholarCross RefCross Ref
  7. Kalyanmoy Deb. 2015. Springer Handbook of Computational Intelligence. Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter Multi-Objective Evolutionary Algorithms, 995--1015.Google ScholarGoogle Scholar
  8. William F. DeGrado, Christopher M. Summa, Vincenzo Pavone, Flavia Nastri, and Angela Lombardi. 1999. De Novo Design and Structural Characterization of Proteins and Metalloproteins. Annual Review of Biochemistry 68 (1999), 779--819.Google ScholarGoogle ScholarCross RefCross Ref
  9. David J. Earl and Michael W. Deem. 2005. Parallel tempering: Theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7 (2005), 3910--3916. Issue 23.Google ScholarGoogle Scholar
  10. Jorge A. Fallas and Jeffrey D. Hartgerink. 2012. Computational design of self-assembling register-specific collagen heterotrimers. Nature Communications 3 (2012), 1087.Google ScholarGoogle ScholarCross RefCross Ref
  11. David Fleishman, Sarel and Baker. 2012. Role of the Biomolecular Energy Gap in Protein Design, Structure, and Evolution. Cell 149 (2012), 262--273. Issue 2.Google ScholarGoogle ScholarCross RefCross Ref
  12. Bernd Hartke. 2004. Application of Evolutionary Algorithms to Global Cluster Geometry Optimization. Structure and Bonding 110 (2004), 33--53.Google ScholarGoogle ScholarCross RefCross Ref
  13. H.W. Hellinga and F.M. Richards. 1994. Optimal sequence selection in proteins of known structure by simulated evolution. Proc. Nat. Acad. Sci. U.S.A. 91 (1994), 5803--5807. Issue 13.Google ScholarGoogle ScholarCross RefCross Ref
  14. Po-Ssu Huang, Scott E. Boyken, and David Baker. 2016. The coming of age of de novo protein design. Nature 537 (2016), 320--327. Issue 7620.Google ScholarGoogle ScholarCross RefCross Ref
  15. Brian Kuhlman, Gautam Dantas, Gregory C. Ireton, Gabriele Varani, Barry L. Stoddard, and David Baker. 2003. Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. Science 302, 5649 (2003), 1364--1368.Google ScholarGoogle Scholar
  16. Andrew Leaver-Fay, Ron Jacak, P. Benjamin Stranges, and Brian Kuhlman. 2011. A Generic Program for Multistate Protein Design. PLos ONE 6, 7 (07 2011), 1--17.Google ScholarGoogle Scholar
  17. Yaohang Li, Charlie E.M. Strauss, and Andrey Gorin. 2004. Parallel tempering in rosetta practice. In Proceedings of International Conference on Bioinformatics and its Applications (ICBA '04).Google ScholarGoogle Scholar
  18. J. Machta. 2009. Strengths and weaknesses of parallel tempering. Phys. Rev. E 80 (Nov 2009), 056706. Issue 5.Google ScholarGoogle ScholarCross RefCross Ref
  19. Katherine M. Malan and Andries P. Engelbrecht. 2013. A survey of techniques for characterising fitness landscapes and some possible ways forward. Information Sciences 241 (2013), 148 -- 163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Enzo Marinari and Giorgio Parisi. 1992. Simulated tempering: a new Monte Carlo scheme. EPL (Europhysics Letters) 19, 6 (1992), 451.Google ScholarGoogle Scholar
  21. Michael Masin and Yossi Bukchin. 2008. Diversity maximization approach for multiobjective optimization. Operations Research 56, 2 (2008), 411--424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Vikas Nanda and Ronald L. Koder. 2010. Designing artificial enzymes by intuition and computation. Nature Chemistry 2 (2010), 15--24. Issue 1.Google ScholarGoogle ScholarCross RefCross Ref
  23. Lucas Gregorio Nivón, Rocco Moretti, and David Baker. 2013. A Pareto-Optimal Refinement Method for Protein Design Scaffolds. PLoS ONE 8, 4 (2013), e59004.Google ScholarGoogle ScholarCross RefCross Ref
  24. OpenAI. 2017. Evolution Strategies as a Scalable Alternative to Reinforcement Learning. Commun. ACM 60, 4 (2017).Google ScholarGoogle Scholar
  25. Douglas H. Pike and Vikas Nanda. 2015. Empirical estimation of local dielectric constants: Toward atomistic design of collagen mimetic peptides. Peptide Science 104, 4 (2015), 360--370.Google ScholarGoogle ScholarCross RefCross Ref
  26. Edgar Reehuis and Thomas Bäck. 2010. Mixed-integer evolution strategy using multiobjective selection applied to warehouse design optimization. In Proceedings of the 12th annual conference on Genetic and evolutionary computation (GECCO '10). ACM, New York, NY, USA, 1187--1194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Günter Rudolph. 2012. Handbook of Natural Computing: Theory Experiments, and Applications. Springer-Verlag, Berlin-Heidelberg, Germany, Chapter Evolutionary Strategies, 673--698.Google ScholarGoogle Scholar
  28. Andrea Toffolo and Ernesto Benini. 2003. Genetic Diversity As an Objective in Multi-objective Evolutionary Algorithms. Evol. Comput. 11, 2 (May 2003), 151--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Leonardo Vanneschi, Andrea Valsecchi, and Riccardo Poli. 2009. Limitations of the Fitness-proportional Negative Slope Coefficient As a Difficulty Measure. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO '09). ACM, New York, NY, USA, 1877--1878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. David J. Wales and Mark A. Miller. 1998. Archetypal energy landscapes. Nature 394 (1998), 758 -- 760. Issue 6695.Google ScholarGoogle ScholarCross RefCross Ref
  31. Shira Warszawski, Ravit Netzer, Dan S. Tawfik, and Sarel Fleishman. 2014. A "Fuzzy"-Logic Language for Encoding Multiple Physical Traits in Biomolecules. Journal of Molecular Biology 426, 24 (2014), 4125 -- 4138.Google ScholarGoogle ScholarCross RefCross Ref
  32. Michael T. Wolfinger, Sebastian Will, Ivo L. Hofacker, Rolf Backofen, and Peter F. Stadler. 2006. Exploring the lower part of discrete polymer model energy landscapes. EPL (Europhysics Letters) 74, 4 (2006), 726.Google ScholarGoogle ScholarCross RefCross Ref
  33. Fei Xu, Teresita Silva, Mihir Joshi, Sohail Zahid, and Vikas Nanda. 2013. Circular Permutation Directs Orthogonal Assembly in Complex Collagen Peptide Mixtures. The Journal of Biological Chemistry 288 (2013), 31616--31623. Issue 44.Google ScholarGoogle ScholarCross RefCross Ref
  34. Fei Xu, Sohail Zahid, Teresita Silva, and Vikas Nanda. 2011. Computational Design of a Collagen A:B:C-type Heterotrimer. Journal of the American Chemical Society 133 (2011), 15260--15263. Issue 39.Google ScholarGoogle ScholarCross RefCross Ref
  35. E. Zitzler, M. Laumanns, and L. Thiele. 2001. SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, K. C. Giannakoglou, D. T. Tsahalis, J. Périaux, K. D. Papailiou, and T. Fogarty (Eds.). International Center for Numerical Methods in Engineering, 95--100.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader