10.1145/309831.309934acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article
Free Access

Fast deterministic computation of determinants of dense matrices

Authors Info & Claims
Published:01 July 1999Publication History
First page image

References

  1. 1.BAREISS, E. Computational sohltions of' matrix problems over an integral domain. J. Inst. Maths Applies 10 (1972), 68--104.]]Google ScholarGoogle ScholarCross RefCross Ref
  2. 2.BREIMAN, L. Probability. Addison--\Vesley, 1968.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. 3.BRONNIMANN. H., EMIR1S, I., PAN, V., AND PIO..X', S. Computing exact geometric predicat, es using modular arithmetic with single precision. In Symposium on Computational Geometry '97 (1997), pp. 174--182.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. 4.C, APANI. A.. NIESI, G., AND ~,OBBIANO, L. CoCoA" Computations in commutative algebra, http'//cocoa. dima. unige, it/.]]Google ScholarGoogle Scholar
  5. 5.C, LARKSO.\', K. Safe and effe(:tive determinant evaluation. In Proc. 33rd Ann. IEEE Syrup. Foundations of Comp. Science (1992), pp. 387-395.]]Google ScholarGoogle Scholar
  6. 6.DixoN, J. Exact solution of linear equations using padic expansions. Numer. Math. 40 (1982), 137-141.]]Google ScholarGoogle ScholarCross RefCross Ref
  7. 7.DOMI(::H, P., KANNAN, R., AND TROTTER, L. Hermite norlual fornl coinputa.tion using modulo deternlinant arithmetic. Math. Oper. Re.s. 12 (1987), 50 59.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. 8.FItUMKIN, M. Polynomial time algorithms in tile theory of linear diophantine equations. LNCS 56 (1977), 386- 392.]]Google ScholarGoogle Scholar
  9. 9.HAFNEII, J., AND MCC, URLEY, K. Asymptotically fast triangularization of matrices over rings. SIAM J. Comput. 20 (1991), 1068-1083.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. 10.HOKN, R.. AND JOItNSON, C. Matrix Analysis. Cambridge University Press, 1985.]]Google ScholarGoogle Scholar
  11. 11.HOWELL, J. Spans in the inodule (Z,~)~. Linear and Mv ltilinear Algebra 19 (1986), 67-77.]]Google ScholarGoogle Scholar
  12. 12.MULDERS, T., AND STORJOIIANN, A. Diot)hantine lin- (tar syst, eln solving. In these proceedings (1999).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. 13.N I~WMAN, M. Integral Matrices. Academic Press, 1972.]]Google ScholarGoogle Scholar
  14. 14.PAN, V. CoIuputing the determinant and the charactersitic i)olynomial of a matrix via solving linear systems of equations. Inf. Proc. Letters 28 (1988), 71-75.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. 15.SHouP, V. NTL' A library ibr doing number theory. http"//www, cs. wisc. edu/~shoup/ntl.]]Google ScholarGoogle Scholar
  16. 16.S'I'OI?~JOHANN, A., AND .~"}~ULDERS, T. F~k~t, &lgorit.llms for linear algebra modulo N. In Proc. 6th Ann. European Syrup. on Algorithms (1998), LNCS 1461, pp. 139- 150.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast deterministic computation of determinants of dense matrices

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISSAC '99: Proceedings of the 1999 international symposium on Symbolic and algebraic computation
        July 1999
        314 pages
        ISBN:1581130732
        DOI:10.1145/309831

        Copyright © 1999 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 1999

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        Overall Acceptance Rate350of728submissions,48%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader
      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!