10.1145/3123939.3123943acmconferencesArticle/Chapter ViewAbstractPublication PagesmicroConference Proceedingsconference-collections
research-article
Public Access

Using branch predictors to predict brain activity in brain-machine implants

Published:14 October 2017Publication History

ABSTRACT

A key problem with implantable brain-machine interfaces is that they need extreme energy efficiency. One way of lowering energy consumption is to use the low power modes available on the processors embedded in these devices. We present a technique to predict when neuronal activity of interest is likely to occur so that the processor can run at nominal operating frequency at those times, and be placed in low power modes otherwise. To achieve this, we discover that branch predictors can also predict brain activity. We perform brain surgeries on awake and anesthetized mice, and evaluate the ability of several branch predictors to predict neuronal activity in the cerebellum. We find that perceptron branch predictors can predict cerebellar activity with accuracies as high as 85%. Consequently, we co-opt branch predictors to dictate when to transition between low power and normal operating modes, saving as much as 59% of processor energy.

References

  1. {n. d.}. Cerebellum Image. Life Science Databases/Wikimedia Commons ({n. d.}).Google ScholarGoogle Scholar
  2. {n. d.}. Utah array. http://churchlandlab.neuroscience.columbia.edu/images/utahArray.jpg ({n. d.}).Google ScholarGoogle Scholar
  3. {n. d.}. Utah array plugged. http://prometheus.med.utah.edu/bwjones/wp-content/uploads/iblog/Implant1.jpg ({n. d.}).Google ScholarGoogle Scholar
  4. Manor Alwani, Han Chen, Michael Ferdman, and Peter Milner. 2016. Fused-Layer CNN Accelerators. Int'l Symp. on Microarch. (2016).Google ScholarGoogle Scholar
  5. Renee St. Amant, Daniel Jimenez, and Doug Burger. 2008. Low-Power, High-Perf. Analog Neural Branch Prediction. Int'l Symp. on Microarch. (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Gian Nicola Angotzi, Fabio Boi, Stefano Zordan, Andrea Bonfanti, and Alessandro Vato. 2014. A Programmable Closed-Loop Recording and Stimulating Wireless System for Behaving Small Laboratory Animals. Scie. Reps. 4, 5963 (2014).Google ScholarGoogle Scholar
  7. M Aravind and Suresh Babu. 2015. Embedded Implementation of Brain Comp. Interface Concept Using FPGA. Int'l Jnl. of Science and Research (2015).Google ScholarGoogle Scholar
  8. Amirali Baniasadi and Andreas Moshovos. 2002. Branch Predictor Prediction: A Power-Aware Branch Predictor for High-Perf. Processors. ICCD (2002).Google ScholarGoogle Scholar
  9. Boris Barbour. {n. d.}. Equipe Cervelet. http://www.ibens.ens.fr ({n. d.}).Google ScholarGoogle Scholar
  10. Abhishek Bhattacharjee and Margaret Martonosi. 2009. Thread Criticality Predictors for Dynamic Perf., Power, and Resource Management in Chip Multiprocessors. Int'l Symp. on Comp. Arch. (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Michael Bielawski and Helen Bondurant. 2015. Psychosis Following a Stroke to the Cerebellum and Midbrain: A Case Report. Cerebellum and Ataxias (2015).Google ScholarGoogle Scholar
  12. Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A Machine-Learning Supercomputer. Int'l Symp. on Microarch. (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne Sze. 2016. 14.5 Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks. Int'l Solid State Circuits Conf. (2016).Google ScholarGoogle Scholar
  14. Steven Cooreman. 2016. Power-Saving Tips When Rapid Prototyping ARM Cortex-M MCUs. http://electronicdesign.com/power/power-saving-tips-when-rapid-prototyping-arm-cortex-m-mcus (2016).Google ScholarGoogle Scholar
  15. Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas Wenisch, and Ricardo Bianchini. 2012. CoScale: Coordinating CPU and Memory SystemDVFS in Server Sys. Int'l Symp. on Microarch. (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas Wenisch, and Ricardo Bianchini. 2012. MultiScale: Memory System DVFS with Multiple Memory Controllers. Int'l Symp. on Low Power Elec. and Des. (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Qingyuan Deng, David Meisner, Luis Ramos, Thomas Wenisch, and Ricardo Bianchini. 2011. MemScale: Active Low-Power Modes for Main Memory. Int'l Conf. on Arch. Supp. for Prog. Lang. and Op. Sys. (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Alessandro Stamatto Ferreira, Leonardo Cunha de Miranda, Erica Cunha de Miranda, and Sarah Gomes Sakamoto. 2013. A Survey of Interactive Sys. Based on Brain-Comp. Interfaces. SBC Jnl. on 3D Interactive Sys. 4, 1 (2013).Google ScholarGoogle Scholar
  19. Volker Gauck and Dieter Jaeger. 2000. The Control of Rate and Timing of Spikes in the Deep Cerebellar Nuclei by Inhibition. Jnl. of Neuro. 20, 8 (2000).Google ScholarGoogle Scholar
  20. Bernhard Graimann, Brendan Allison, and Gert Pfurtscheller. 2010. Brain-Comp. Interfaces: A Gentle Introduction. The Frontiers Collection (2010).Google ScholarGoogle Scholar
  21. Atif Hashmi, Hugues Berry, Olivier Temam, and Mikko Lipasti. 2008. Automatic Abstraction and Fault Tolerance in Cortical Microarch.s. Int'l Symp. on Comp. Arch. (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S Herbert and D Marculescu. 2007. Analysis of Dynamic Voltage/Frequency Scaling in Chip Multiprocessors. Int'l Symp. on Low Power Elec. and Des. (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Masayuki Hirata, Kojiro Matsushita, Takafumi Suzuki, Takeshi Yoshida, Fumihiro Sato, Shayne Morris, Takufumi Yanagisawa, Tetsu Goto, Mitsuo Kawato, and Toshiki Yoshimine. 2014. A Fully-Implantable Wireless System for Human Brain-Machine Interfaces Using Brain Surface Electrodes: W-HERBS. IEEE Trans. on Comm. E94-B, 9 (2014).Google ScholarGoogle Scholar
  24. Daniel Jimenez. 2003. Fast Path-Based Neural Branch Prediction. Int'l Symp. on Comp. Arch. (2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Daniel Jimenez. 2005. Piecewise Linear Branch Prediction. Int'l Symp. on Comp. Arch. (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Daniel Jimenez and Calvin Lin. 2001. Dynamic Branch Prediction with Perceptrons. Int'l Symp. on High Perf. Comp. Arch. (2001). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Daniel Jimenez and Calvin Lin. 2002. Neural Methods for Dynamic Branch Prediction. ACM Trans. on Arch. and Code Optimization (2002).Google ScholarGoogle Scholar
  28. Alok Joshi, Vahab Youssofzadeh, Vinith Vemana, T McGinnity, Girijesh Prasad, and KongFatt Wong-Lin. 2017. An Integrated Modelling Framework for Neural Circuits with Multiple Neuromodulators. Jnl. of the Royal Soc. Interface (2017).Google ScholarGoogle Scholar
  29. G Kaloshi, V Alikaj, A Rroji, G Vreto, and M Petrela. 2013. Visual and Auditory Hallucinations Revealing Cerebellar Extraventricular Neurocytoma: Uncommon Presentation for Uncommon Tumor in Uncommon Location. General Hostpial Psychiatry 35, 6 (2013).Google ScholarGoogle Scholar
  30. Stefanos Kaxiras and Margaret Martonosi. 2009. Comp. Arch. Techniques for Power Efficiency. Synthesis Lecture Series (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ryan Kelly, Matthew Smith, Jason Samonds, Adam Kohn, A Bonds, J Movshon, and Tai Lee. 2007. Comparison of Recordings from Microelectrode Arrays and Single Electrodes in the Visual Cortex. Jnl. of Neuro. 27, 2 (2007).Google ScholarGoogle Scholar
  32. P Kohler, C Linsmeier, J Thelin, M Bengtsson, H Jorntell, M Garwicz, J Schouenborg, and L Wallman. 2009. Flexible Multi-Electrode Brain-Machine Interface for Recording in the Cerebellum. IEEE Eng. Medicine Biology Soc. 536, 8 (2009).Google ScholarGoogle Scholar
  33. Ki Yong Kwon, Seif Eldawatly, and Karim Oweiss. 2012. NeuroQuest: A Comprehensive Analysis Tool for Extracellular Neural Ensemble Recording. Jnl. of Neuro. Methods 204, 1 (2012).Google ScholarGoogle Scholar
  34. Charles Lefurgy, Kartik Rajamani, F Rawson, W Felter, M Kistler, and T Keller. 2003. Energy Management for Commercial Servers. IEEE Comp. 36, 12 (2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jian Li, Jose Martinez, and Michael Huang. 2004. The Thrifty Barrier: Energy-Aware Synchronization in Shared-Memory Multiprocessors. Int'l Symp. on High Perf. Comp. Arch. (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sheng Li, Jung Ho Ahn, Richard Strong, Jay Brockman, Dean Tullsen, and Norman Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Arch.s. Int'l Symp. on Microarch. (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier Temam, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. 2015. Pudiannao: A Polyvalent Machine Learning Accelerator. Int'l Conf. on Arch. Supp. for Prog. Lang. and Op. Sys. (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Xilin Liu, Basheer Subei, Milin Zhang, Andrew Richardson, Timothy Lucas, and Jan Van der Spiegel. 2014. The PennBMBI: A General Purpose Wireless Brain-Machine-Brain Interface System for Unrestrained Animals. IEEE Int'l Symp. on Circuits and Sys. (2014).Google ScholarGoogle Scholar
  39. N Matsumi, K Matsumoto, N Mishima, E Moriyama, T Furuta, A Nishimoto, and K Taguchi. 1993. Thermal Damage Threshold of Brain Tissue - Histological Study of Heated Normal Monkey Brains. Neurol Med Chir (1993).Google ScholarGoogle Scholar
  40. Scott McFarling. 1993. Combining Branch Predictors. Tech. Rep. TN-36m, Digital Western Lab (1993).Google ScholarGoogle Scholar
  41. David Meisner, Brian Gold, and Thomas Wenisch. 2009. PowerNap: Eliminating Server Idle Power. Int'l Conf. on Arch. Supp. for Prog. Lang. and Op. Sys. (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. David Meisner, Christopher Sadler, Luis Barroso, W-D Webber, and Thomas Wenisch. 2011. Power Management of On-Line Data Intensive Services. Int'l Symp. on Comp. Arch. (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. David Meisner and Thomas Wenisch. 2012. DreamWeaver: Arch. Supp. for Deep Sleep. Int'l Conf. on Arch. Supp. for Prog. Lang. and Op. Sys. (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Jorge Mercado, Javier Herrera, Arturo de Jesus Plansza, and Josefina Guiterrez. 2016. Embedded EEG Recording Module with Active Electrodes for Motor Imagery Brain-Comp. Interface. IEEE Latin America Trans. 75 (2016).Google ScholarGoogle Scholar
  45. Corinne Mestais, Guillaume Charvet, Fabien Sauter-Starace, Michael Foerster, David Ratel, and Alim Louis Bernabid. 2014. WIMAGINE: Wireless 64-Channel ECoG Recording Implant for Long Term Clinical Applications. IEEE Trans. on Neural Sys. and Rehab. Eng. 23, 1 (2014).Google ScholarGoogle Scholar
  46. Gregory Mone. 2015. Sens. on the Brain. Comm. of the ACM 60, 4 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Christian Muhl, Brendan Allison, Anton Nijholt, and Guillaume Chanel. 2014. A Survey of Affective Brain Comp. Interfaces: Principles, State-of-the-Art, and Challenges. Brain-Comp. Interfaces 1, 2 (2014).Google ScholarGoogle Scholar
  48. Naveen Muralimanohar, Rajeev Balasubramonian, and Norman Jouppi. 2007. CACTI 6.0: A Tool to Model Large Caches. Int'l Symp. on Microarch. (2007).Google ScholarGoogle Scholar
  49. Andrew Nere, Atif Hashmi, Mikko Lipasti, and Giulio Tononi. 2013. Bridging the Semantic Gap: Emulating Biological Neuronal Behavior with Simple Digital Neurons. Int'l Symp. on High Perf. Comp. Arch. (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. TKT Nguyen, Zaneta Navratilova, Henrique Cabral, Ling Wang, Georges Gielen, FP Battaglia, and Carmen Bartic. 2014. Closed-Loop Optical Neural Stimulation Based on a 32-Channel Low-Noise Recording System with Online Spike Sorting. Jnl. of Neural Eng. 11, 4 (2014).Google ScholarGoogle Scholar
  51. C Nordhausen, E Maynard, and R Normann. 1996. Single Unit Recording Capabilities of a 100 Microelectrode Array. Brain Res (1996).Google ScholarGoogle Scholar
  52. Open Ephys Wiki. 2015. Possible Projects and Future Development. https://open-ephys.atlassian.net/wiki/ (2015).Google ScholarGoogle Scholar
  53. Ilker Ozden, Megan Sullivan, Megan Lee, and Samuel Wang. 2009. Reliable Coding Emerges from Coactivation of Climbing Fibers in Microbands of Cerebellar Purkinje Neurons. Jnl. of Neuro. 29, 34 (2009).Google ScholarGoogle Scholar
  54. A Palumbo, F Amato, B Calabrese, M Cannataro, G Cocorullo, A Gambardella, P Guzzi, M Lanuzza, M Sturniolo, P Veltri, and P Vizza. 2015. An Embedded System for EEG Acquisition and Processing for Brain Comp. Interface Applications. Wearable and Autonomous Bio. Dev. and Sys. for Smart Environments 75 (2015).Google ScholarGoogle Scholar
  55. Dharmesh Parikh, Kevin Skadron, Yan Zhang, Marco Barcella, and Mircea Stan. 2002. Power Issues Related to Branch Prediction. HPCA (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Hernan Picard, Isabelle Amado, Sabine Mouchet-Mages, Jean-Pierre Olie, and Marie-Odile Krebs. 2008. The Role of the Cerebellum in Schizophrenia: An Update of Clinical, Cognitive, and Functional Evidences. Schizo. Bull. 34, 1 (2008).Google ScholarGoogle Scholar
  57. Steve Ramirez, Xu Liu, Pei-Ann Lin, Junghyup Suh, Michael Pignatelli, Roger Redondo, Tomas Ryan, and Susomo Tonegawa. 2013. Creating a False Memory in the Hippocampus. Science 341, 6144 (2013).Google ScholarGoogle Scholar
  58. Hernan Rey, Carlos Padreira, and Rodrigo Quiroga. 2015. Past, Present, and Future of Spike Sorting Techniques. Elsevier Review (2015).Google ScholarGoogle Scholar
  59. B Rosin, M Slovik, R Mitelman, M Rivlin-Etzion, S Haber, Z Israel, E Vaadia, and H Bergman. 2011. Closed-Loop Deep Brain Stimulation is Superior in Ameliorating Parkinsioniasm. Neuron 72, 2 (2011).Google ScholarGoogle Scholar
  60. James Smith. 1981. A Study of Branch Prediction Strategies. Int'l Symp. on Comp. Arch. (1981). Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. James Smith. 2014. Efficient Digital Neurons for Larce Scale Cortical Arch.s. Int'l Symp. on Comp. Arch. (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. ST Microelectronics. 2016. Ultra-low-power ARM Cortex-M4 32-bit datasheet. http://www.st.com/content/ccc/resource/technical/document/datasheet/ (2016).Google ScholarGoogle Scholar
  63. Ian Stevenson and Konrad Kording. 2011. How Advances in Neural Recording Affect Data Analysis. Nature Neuro. 14 (2011).Google ScholarGoogle Scholar
  64. Yi Su, Sudhamayee Routhu, Kee Moon, Sung Lee, WooSub Youm, and Yusuf Ozturk. 2016. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface. Sens. 16, 1582 (2016).Google ScholarGoogle Scholar
  65. M Sullivan, A Nimmerjahn, D Sarkisov, F Helmchen, and SS-H Wang. 2005. In Vivo Calcium Imaging of Circuit Activity in Cerebellar Cortex. Jnl. of Neurophys. 94 (2005).Google ScholarGoogle Scholar
  66. S Suner, M Fellows, C Vargas-Irwin, G Nakata, and J Donoghue. 2005. Reliability of Signals From a Chronically Implanted, Silicon-Based Electrode Array in Non-Human Primate Primary Motor Cortex. IEEE Trans. on Neural Sys. and Rehab. Eng. (2005).Google ScholarGoogle Scholar
  67. D Tank, M Sugimori, J Connor, and R Llinas. 1998. Spatially Resolved Calcium Dynamics of Mammalian Purkinje Cells in Cerebellar Slice. Science 242 (1998).Google ScholarGoogle Scholar
  68. Elvira Teran, Zhe Wang, and Daniel Jimenez. 2016. Perceptron Learning for Reuse Prediction. Int'l Symp. on Microarch. (2016).Google ScholarGoogle Scholar
  69. Patrick Wolf. 2008. Thermal Considerations for the Des. of an Implanted Cortical Brain-Machine Interface (BMI). Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment (2008).Google ScholarGoogle Scholar
  70. Pavel Yarmolenko, Eui Jung Moon, Chelsea Landon, Ashley Manzoor, Daryl Hochman, Benjamin Viglianti, and Mark Dewhirst. 2013. Thresholds for Thermal Damage to Normal Tissue: An Update. Int'l Jnl. of Hyperthermia (2013).Google ScholarGoogle Scholar
  71. Tse-Yu Yeh and Yale Patt. 1991. Two-Level Adaptive Training Branch Prediction. Int'l Symp. on Microarch. (1991). Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Stavros Zanos, Andrew Richardson, Larry Shupe, Frank Miles, and Eberhard Fetz. 2011. The Neurochip-2: An Autonomous Head-Fixed Comp. for Recording and Stimulating in Freely Behaving Monkeys. IEEE Trans. on Neural Sys. and Rehab. Eng. 19, 4 (2011).Google ScholarGoogle Scholar
  73. C De Zeeuw, J Simpson, C Hoogenraad, N Galjart, S Koekkoek, and T Ruigrok. 1998. Microcircuitry and the Function of the Inferior Olive. Trends in Neuro. 21, 9 (1998).Google ScholarGoogle Scholar

Index Terms

  1. Using branch predictors to predict brain activity in brain-machine implants

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader
            About Cookies On This Site

            We use cookies to ensure that we give you the best experience on our website.

            Learn more

            Got it!