skip to main content
10.1145/3126594.3126651acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article
Open Access

Rico: A Mobile App Dataset for Building Data-Driven Design Applications

Authors Info & Claims
Published:20 October 2017Publication History

ABSTRACT

Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.7k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 72k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query- by-example search over UIs.

Skip Supplemental Material Section

Supplemental Material

suppl.mov

Supplemental video

References

  1. Android Activities, 2016. https://developer.android.com/guide/components/activities.html.Google ScholarGoogle Scholar
  2. Database of Android Apps on Kaggle, 2016. https://www.kaggle.com/orgesleka/android-apps.Google ScholarGoogle Scholar
  3. UI Overview, 2016. https://developer.android.com/guide/topics/ui/overview.html.Google ScholarGoogle Scholar
  4. Alharbi, K., and Yeh, T. Collect, decompile, extract, stats, and diff: Mining design pattern changes in Android apps. In Proc. MobileHCI (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Amini, S. Analyzing Mobile App Privacy Using Computation and Crowdsourcing. PhD thesis, Carnegie Mellon University, 2014.Google ScholarGoogle Scholar
  6. Azim, T., and Neamtiu, I. Targeted and depth-first exploration for systematic testing of android apps. In ACM SIGPLAN Notices (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bell, S., and Bala, K. Learning visual similarity for product design with convolutional neural networks. ACM TOG (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bengio, Y. Learning deep architectures for ai. Foundations and Trends in Machine Learning 2, 1 (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bhoraskar, R., Han, S., Jeon, J., Azim, T., Chen, S., Jung, J., Nath, S., Wang, R., and Wetherall, D. Brahmastra: Driving apps to test the security of third-party components. In Proc. SEC (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer, S. R. Example-centric programming: integrating web search into the development environment. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM (2010), 513--522. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Deka, B., Huang, Z., and Kumar, R. ERICA: Interaction mining mobile apps. In Proc. UIST (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proc. CVPR (2009).Google ScholarGoogle ScholarCross RefCross Ref
  13. Eckert, C., and Stacey, M. Sources of inspiration: A language of design. Design Studies 21, 5 (2000), 523--538.Google ScholarGoogle ScholarCross RefCross Ref
  14. Eckert, C., Stacey, M., and Earl, C. References to past designs. Studying Designers 5 (2005), 3--21.Google ScholarGoogle Scholar
  15. Frank, M., Dong, B., Felt, A. P., and Song, D. Mining permission request patterns from android and facebook applications. In Proc. ICDM (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., and Sadeh, N. Why people hate your app: Making sense of user feedback in a mobile app store. In Proc. KDD (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., and Jacobs, D. A search engine for 3D models. ACM TOG (2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Koch, J., and Oulasvirta, A. Computational layout perception using gestalt laws. In Proc. CHI (Extended Abstracts) (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kumar, R., Satyanarayan, A., Torres, C., Lim, M., Ahmad, S., Klemmer, S. R., and Talton, J. O. Webzeitgeist: Design mining the web. In Proc. CHI (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lee, K., Flinn, J., Giuli, T., Noble, B., and Peplin, C. Amc: Verifying user interface properties for vehicular applications. In Proc. Mobisys (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Leuthold, S., Schmutz, P., Bargas-Avila, J. A., Tuch, A. N., and Opwis, K. Vertical versus dynamic menus on the world wide web: Eye tracking study measuring the influence of menu design and task complexity on user performance and subjective preference. Computers in human behavior 27, 1 (2011), 459--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. McAuley, J., Targett, C., Shi, Q., and Van Den Hengel, A. Image-based recommendations on styles and substitutes. In Proc SIGIR, ACM (2015), 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Miller, S. R., and Bailey, B. P. Searching for inspiration: An in-depth look at designers example finding practices. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2014).Google ScholarGoogle Scholar
  24. Miniukovich, A., and De Angeli, A. Visual impressions of mobile app interfaces. In Proc. Nordic CHI (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Miniukovich, A., and De Angeli, A. Computation of interface aesthetics. In Proc. CHI (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Miniukovich, A., and De Angeli, A. Visual diversity and user interface quality. In Proc. British HCI (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Miniukovich, A., and De Angeli, A. Pick me!: Getting noticed on google play. In Proc. CHI (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nair, V., and Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In Proc. ICML (2010), 807--814. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Nguyen, T. A., and Csallner, C. Reverse engineering mobile application user interfaces with REMAUI. In Proc. ASE (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. O'Donovan, P., Agarwala, A., and Hertzmann, A. Learning layouts for single-page graphic designs. IEEE TVCG (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Reinecke, K., Yeh, T., Miratrix, L., Mardiko, R., Zhao, Y., Liu, J., and Gajos, K. Z. Predicting users' first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness. In Proc. CHI (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ritchie, D., Kejriwal, A. A., and Klemmer, S. R. d. tour: Style-based exploration of design example galleries. In Proc. UIST (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sahami Shirazi, A., Henze, N., Schmidt, A., Goldberg, R., Schmidt, B., and Schmauder, H. Insights into layout patterns of mobile user interfaces by an automatic analysis of Android apps. In Proc. EICS (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Szydlowski, M., Egele, M., Kruegel, C., and Vigna, G. Challenges for dynamic analysis of iOS applications. In Open Problems in Network Security. Springer, 2012, 65--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Talton, J., Yang, L., Kumar, R., Lim, M., Goodman, N., and Mech, R. Learning design patterns with bayesian grammar induction. In Proc. UIST, ACM (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tractinsky, N., Inbar, O., Tsimhoni, O., and Seder, T. Slow down, you move too fast: Examining animation aesthetics to promote eco-driving. In Proc. AutoUI, ACM (2011), 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. van der Geest, T., and Loorbach, N. Testing the visual consistency of web sites. Technical communication 52, 1 (2005), 27--36.Google ScholarGoogle Scholar
  38. Viennot, N., Garcia, E., and Nieh, J. A measurement study of google play. In ACM SIGMETRICS Performance Evaluation Review, vol. 42, ACM (2014), 221--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yi, L., Guibas, L., Hertzmann, A., Kim, V. G., Su, H., and Yumer, E. Learning hierarchical shape segmentation and labeling from online repositories. In Proc. SIGGRAPH (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Rico: A Mobile App Dataset for Building Data-Driven Design Applications

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        UIST '17: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology
        October 2017
        870 pages
        ISBN:9781450349819
        DOI:10.1145/3126594

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 October 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        UIST '17 Paper Acceptance Rate73of324submissions,23%Overall Acceptance Rate842of3,967submissions,21%

        Upcoming Conference

        UIST '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader