skip to main content
10.1145/3151137.3160687acmotherconferencesArticle/Chapter ViewAbstractPublication PagesssprewConference Proceedingsconference-collections
research-article

Packer identification based on metadata signature

Published: 05 December 2017 Publication History

Abstract

Malware applies lots of obfuscation techniques, which are often automatically generated by the use of packers. This paper presents a packer identification of packed code based on metadata signature, which is a frequency vector of occurrences of classified obfuscation techniques. First, BE-PUM (Binary Emulator for PUshdown Model generation) disassembles and generates the control flow graph of malware in an on-the-fly manner, using concolic testing. Second, obfuscation techniques in the generated control flow graph are detected based on the formal criteria of each obfuscation technique. Last, the used packer is identified with the chisquare test on the metadata signature of a packed code. The precision is evaluated with experiments on 12814 malware from VX heaven and Virusshare, in which 608 examples are detected inconsistent with commercial packer identification at PEiD, CFF Explore, and VirusTotal. We manually confirm that, except for 1 example, BE-PUM is correct. The only case that BE-PUM misunderstands is between MEW and FSG, which are quite similar packers and current BE-PUM extension does not support MEW.

References

[1]
John, F. G., Alejandro, F., Richard, L., Victor, L., Biplab, S., Sravana, K., Sristi, L., Logesh, M. and Mangalam, N. The Link between Pirated Software and Cybersecurity Breaches. Retrieved from http://news.microsoft.com/download/presskits/dcu/docs/idc_031814.pdf.
[2]
Al-Anezi, M.M.K. Generic packing detection using several complexity analysis for accurate malware detection. In International Journal Advanced Computer Science, 5(1), 2014.
[3]
Osaghae, E.O. Classifying Packed Programs as Malicious Software Detected. In International Journal of Information Technology and Electrical Engineering, Vol. 5, pp 22--25, 2016.
[4]
Santos, I., Ugarte-Pedrero, X., Sanz, B., Laorden, C. and Bringas, P.G. Collective classification for packed executable identification. In Proceedings of the 8th Annual Collaboration, Electronic Messaging, Anti-Abuse and Spam Conference, pp. 23--30, Perth, Australia, 2011.
[5]
McAfee The Good, the Bad, and the Unknown available online: http://www.techdata.com/mcafee/files/MCAFEE_wp_appcontrol-good-bad-unknown.pdf (accessed on 21th May 2017).
[6]
Anti-virus technology whitepaper. Technical report, BitDefender, 2007.
[7]
T. Ban, R. Isawa, S. Guo, D. Inoue, K. Nakao. Efficient malware packer identification using support vector machines with spectrum kernel. In AsiaJCIS, pp.69--76, 2013.
[8]
Yan, W., Zhang, Z., and Ansari, N. Revealing Packed Malware. In IEEE, Security and Privacy, Vol. 6, Issue: 5, pp. 65--69.
[9]
Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos and Pablo G. Bringas SoK: Deep Packer Inspection: A Longitudinal Study of the Complexity of Run-Time Packers. In Journal of 2015 IEEE Symposium on Security and Privacy, pp. 659--673
[10]
T. Ban, R. Isawa, S. Guo, D. Inoue, K. Nakao. Application of string kernel based support vector machine for malware packer identification. In IJCNN, 2013
[11]
G. Bonfante, J. Fernez, J.-Y. Marion, B. Rouxel, F. Sabatier, A. Thierry. Codisasm: Medium scale concatic disassembly of self-modifying binaries with overlapping instructions. In ACM SIGSAC CCS, pp.46--53, 2015.
[12]
F. Guo, P. Ferrie, T. Chiueh. A Study of the Packer Problem and Its Solutions. in RAID, pp.98--115, 2008 LNCS 5230.
[13]
R. Isawa, M. Kamizono, D. Inoue. Generic Unpacking Method Based on Detecting Original Entry Point. In NIP, pp.593--600, 2013. LNCS 8226.
[14]
G. Jeong, E. Choo, J. Lee, M. Bat-Erdene, H. Lee. Generic Unpacking using Entropy Analysis. In Malware, pp.114--121, 2010.
[15]
K. Kancherla, J. Donahue, S. Mukkamala. Packer identification using Byte plot and Markov plot. Journal of Computer Virology and Hacking Techniques, 12(2), pp.101--111, 2016.
[16]
M. G. Kang, P. Poosankam, H. Yin. Renovo: a hidden code extractor for packed executables. In ACM WORM, pp.46--53, 2007.
[17]
J. Kinder D. Kravchenko. Alternating control flow reconstruction. In VMCAI, pp.267--282, 2012. LNCS 7148.
[18]
J. Kinder, F. Zuleger, H. Veith. An abstract interpretation-based framework for control flow reconstruction from binaries. In VMCAI, pp.214--228, 2009. LNCS 5403.
[19]
J. Kinder. Static Analysis of x86 Executables. PhD thesis, Technische Universitat Darmstadt, 2010.
[20]
L. Martignoni, M. Christodorescu, S. Jha. OmniUnpack: Fast, Generic, Safe Unpacking of Malware. In ACSAC, pp.431--441, 2007.
[21]
M. Morgenstern, A. Marx. Runtime packer testing experiences. In CARO, pp.288--305, 2008. LNCS 6174.
[22]
M. H. Nguyen, T. B. Nguyen, T. T. Quan, M. Ogawa. A hybrid approach for control flow graph construction from binary code. In IEEE APSEC, pp.159--164, 2013.
[23]
M. H. Nguyen, M. Ogawa, T. T. Quan. Obfuscation code localization based on CFG generation of malware. In FPS, pp.229--247, 2015. LNCS 9482.
[24]
M. H. Nguyen, T. T. Quan, D. A. Le. Multi-threaded On-the-Fly Model Generation of Malware with Hash Compaction. In ICFEM, pp.159--174, 2016.
[25]
K.A. Roundy, B.P. Miller. Binary-code obfuscations in prevalent packer tools. In ACM Comput. Surv, 46, pp.4:1--4:32, 2013.
[26]
P. Royal, M. Halpin, D. Dagon, R. Edmonds, W. Lee. PolyUnpack: Automating the Hidden-Code Extraction of Unpack-Executing Malware. In ACSAC, pp.289--300, 2006.
[27]
V. S. Sathyanarayan, P. Kohli, B. Bruhadadeshwar. Signature Generation Detection of Malware Families. In ACISP, pp.336--349, 2008. LNCS 5107.
[28]
Mutz, Darren and Valeur, Fredrik and Vigna, Giovanni and Kruegel, Christopher Anomalous System Call Detection. In ACM Trans. Inf. Syst. Secur., Vol. 9, no. 1, pp. 61--93, February. 2006.
[29]
F. Maggi, M. Matteucci and S. Zaneroin. Detecting Intrusions through System Call Sequence and Argument Analysis. In IEEE Transactions on Dependable and Secure Computing, Vol. 7, no. 4, pp. 381--395, Dec. 2010.
[30]
M. Shafiq, S. Tabish, M. Farooq. PE-Probe: leveraging packer detection and structural information to detect malicious portable executables. In VB, pp.29--33, 2009.
[31]
D. Song, et al. Bitblaze: A new approach to computer security via binary analysis. In ICISS, pp.1--25, 2008. LNCS 5352.
[32]
F. Song, T. Touili. Pushdown model checking for malware detection. In TACAS, pp.110--125, 2012. LNCS 7214.
[33]
F. Song, T. Touili. LTL model-checking for malware detection. In TACAS, pp.416--431, 2013. LNCS 7795.
[34]
L. Sun, S. Versteeg, S. Boztas, T. Yann. Pattern recognition techniques for the classification of malware packers. In ACISP, Berlin, pp.370--390, 2010. LNCS 6168.
[35]
A. V. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, T. W. Reps. Directed proof generation for machine code. In CAV, pp.288--305, 2010. LNCS 6174.
[36]
R. David, S. Bardin,T.D. Ta, J. Feist, L. Mounier, M.-L. Potet, J.-Y. Marion. BINSEC/SE: A Dynamic Symbolic Execution Toolkit for Binary-level Analysis. In SANER, pp.653--656, 2016.
[37]
M. Morgenstern and H. Pilz Useful and useless statistics about viruses and anti-virus programs. In Proceedings of the CARO Workshop 2010, pp.653--656, 2010.
[38]
X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas. SoK: Deep packer inspection: A longitudinal study of the complexity of run-time packers. In Proc. IEEE Symp. Security and Privacy (S&P), 2015.
[39]
Deep Instinct Research Team Certificate Bypass: Hiding and Executing Malware from a Digitally Signed Executable. In Proceedings of Black Hat USA 2016, August 2016.

Cited By

View all
  • (2024)Identifying Malware Packers through Multilayer Feature Engineering in Static AnalysisInformation10.3390/info1502010215:2(102)Online publication date: 9-Feb-2024
  • (2024)Experimental Toolkit for Manipulating Executable PackingRisks and Security of Internet and Systems10.1007/978-3-031-61231-2_17(263-279)Online publication date: 16-Jun-2024
  • (2023)A survey on run-time packers and mitigation techniquesInternational Journal of Information Security10.1007/s10207-023-00759-y23:2(887-913)Online publication date: 1-Nov-2023
  • Show More Cited By
  1. Packer identification based on metadata signature

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    SSPREW-7: Proceedings of the 7th Software Security, Protection, and Reverse Engineering / Software Security and Protection Workshop
    December 2017
    68 pages
    ISBN:9781450353878
    DOI:10.1145/3151137
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 December 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. binary code analysis
    2. concolic testing
    3. malware
    4. packer

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    SSPREW-7

    Acceptance Rates

    SSPREW-7 Paper Acceptance Rate 6 of 13 submissions, 46%;
    Overall Acceptance Rate 6 of 13 submissions, 46%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)33
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 23 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Identifying Malware Packers through Multilayer Feature Engineering in Static AnalysisInformation10.3390/info1502010215:2(102)Online publication date: 9-Feb-2024
    • (2024)Experimental Toolkit for Manipulating Executable PackingRisks and Security of Internet and Systems10.1007/978-3-031-61231-2_17(263-279)Online publication date: 16-Jun-2024
    • (2023)A survey on run-time packers and mitigation techniquesInternational Journal of Information Security10.1007/s10207-023-00759-y23:2(887-913)Online publication date: 1-Nov-2023
    • (2023)Learning Discriminative Representations for Malware Family ClassificationHybrid Intelligent Systems10.1007/978-3-031-27409-1_121(1327-1336)Online publication date: 25-May-2023
    • (2021)SE-PACProceedings of the Eleventh ACM Conference on Data and Application Security and Privacy10.1145/3422337.3447848(281-292)Online publication date: 26-Apr-2021
    • (2021)2-SPIFF: a 2-stage packer identification method based on function call graph and file attributesApplied Intelligence10.1007/s10489-021-02347-wOnline publication date: 21-Apr-2021
    • (2019)A Consistently-Executing Graph-Based Approach for Malware Packer IdentificationIEEE Access10.1109/ACCESS.2019.29102687(51620-51629)Online publication date: 2019
    • (2018)Packer identification method based on byte sequencesConcurrency and Computation: Practice and Experience10.1002/cpe.508232:8Online publication date: 18-Nov-2018

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media