skip to main content
research-article
Open Access

Steklov Spectral Geometry for Extrinsic Shape Analysis

Published:14 December 2018Publication History
Skip Abstract Section

Abstract

We propose using the Dirichlet-to-Neumann operator as an extrinsic alternative to the Laplacian for spectral geometry processing and shape analysis. Intrinsic approaches, usually based on the Laplace–Beltrami operator, cannot capture the spatial embedding of a shape up to rigid motion, and many previous extrinsic methods lack theoretical justification. Instead, we consider the Steklov eigenvalue problem, computing the spectrum of the Dirichlet-to-Neumann operator of a surface bounding a volume. A remarkable property of this operator is that it completely encodes volumetric geometry. We use the boundary element method (BEM) to discretize the operator, accelerated by hierarchical numerical schemes and preconditioning; this pipeline allows us to solve eigenvalue and linear problems on large-scale meshes despite the density of the Dirichlet-to-Neumann discretization. We further demonstrate that our operators naturally fit into existing frameworks for geometry processing, making a shift from intrinsic to extrinsic geometry as simple as substituting the Laplace–Beltrami operator with the Dirichlet-to-Neumann operator.

Skip Supplemental Material Section

Supplemental Material

a7-wang.mp4

References

  1. Yonathan Aflalo, Haim Brezis, and Ron Kimmel. 2015. On the optimality of shape and data representation in the spectral domain. SIAM Journal on Imaging Sciences 8, 2 (2015), 1141--1160.Google ScholarGoogle ScholarCross RefCross Ref
  2. Hartwig Anzt, Stanimire Tomov, and Jack Dongarra. 2015. Accelerating the LOBPCG method on GPUs using a blocked sparse matrix vector product. In Proc. Symposium on High Performance Computing. 75--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. 2011. The wave kernel signature: A quantum mechanical approach to shape analysis. In Proceedings of the International Conference on Computer Vision (ICCV'11). 1626--1633.Google ScholarGoogle ScholarCross RefCross Ref
  4. Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Maks Ovsjanikov. 2013. An operator approach to tangent vector field processing. In Computer Graphics Forum, Vol. 32. 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Omri Azencot, Maks Ovsjanikov, Frédéric Chazal, and Mirela Ben-Chen. 2015. Discrete derivatives of vector fields on surfaces--An operator approach. Transactions on Graphics 34, 3 (2015), 29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Omri Azencot, Orestis Vantzos, and Mirela Ben-Chen. 2016. Advection-based function matching on surfaces. In Computer Graphics Forum, Vol. 35. 55--64.Google ScholarGoogle ScholarCross RefCross Ref
  7. Omri Azencot, Steffen Weißmann, Maks Ovsjanikov, Max Wardetzky, and Mirela Ben-Chen. 2014. Functional fluids on surfaces. In Computer Graphics Forum, Vol. 33. 237--246.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Mikhail Belkin, Jian Sun, and Yusu Wang. 2008. Discrete Laplace operator on meshed surfaces. In Proceedings of the Symposium on Discrete Algorithms (SODA'08). 278--287. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Mikhail Belkin, Jian Sun, and Yusu Wang. 2009. Constructing Laplace operator from point clouds in R<sup>d</sup>. In Proceedings of the Symposium on Discrete Algorithms (SODA'09). 1031--1040. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Michele Benzi, Gene H. Golub, and Jörg Liesen. 2005. Numerical solution of saddle point problems. Acta Numerica 14 (2005), 1--137.Google ScholarGoogle ScholarCross RefCross Ref
  11. Silvia Bertoluzza. 2003. Non conforming domain decomposition: The Steklov--Poincaré operator point of view. In Domain Decomposition Methods in Science and Engineering. 15--26.Google ScholarGoogle Scholar
  12. Steffen Börm, Lars Grasedyck, and Wolfgang Hackbusch. 2003. Hierarchical Matrices. Technical Report. Max Planck Institute.Google ScholarGoogle Scholar
  13. Davide Boscaini, Davide Eynard, Drosos Kourounis, and Michael M. Bronstein. 2015. Shape-from-operator: Recovering shapes from intrinsic operators. In Computer Graphics Forum, Vol. 34. 265--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. James H. Bramble and Joseph E. Pasciak. 1988. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Mathematics of Computation 50, 181 (1988), 1--17.Google ScholarGoogle ScholarCross RefCross Ref
  15. Haim Brezis. 2010. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  16. Alexander M. Bronstein, Michael M. Bronstein, Leonidas J. Guibas, and Maks Ovsjanikov. 2011. Shape Google: Geometric words and expressions for invariant shape retrieval. Transactions on Graphics 30, 1 (2011), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2008. Numerical Geometry of Non-rigid Shapes. Springer Science 8 Business Media. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Oscar P. Bruno and Stéphane K. Lintner. 2013. A high-order integral solver for scalar problems of diffraction by screens and apertures in three-dimensional space. Journal of Computational Physics 252 (2013), 250--274.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. John Canny and John Reif. 1987. New lower bound techniques for robot motion planning problems. In Annual Symposium on Foundations of Computer Science. 49--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. 2009. A benchmark for 3D mesh segmentation. In Transactions on Graphics, Vol. 28. ACM, 73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ming Chuang, Linjie Luo, Benedict J. Brown, Szymon Rusinkiewicz, and Michael Kazhdan. 2009. Estimating the laplace--Beltrami operator by restricting 3D functions. In Computer Graphics Forum, Vol. 28. 1475--1484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ronald R. Coifman and Stéphane Lafon. 2006. Diffusion maps. Applied and Computational Harmonic Analysis 21, 1 (2006), 5--30.Google ScholarGoogle ScholarCross RefCross Ref
  23. Bruno Colbois, Ahmad El Soufi, and Alexandre Girouard. 2011. Isoperimetric control of the Steklov spectrum. Journal of Functional Analysis 261, 5 (2011), 1384--1399.Google ScholarGoogle ScholarCross RefCross Ref
  24. Etienne Corman, Justin Solomon, Mirela Ben-Chen, Leonidas Guibas, and Maks Ovsjanikov. 2017. Functional characterization of intrinsic and extrinsic geometry. Transactions on Graphics 36, 2 (March 2017), 14:1--14:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. Transactions on Graphics 32, 5 (2013), 152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Johannes J. Duistermaat and Victor W. Guillemin. 1975. The spectrum of positive elliptic operators and periodic bicharacteristics. Inventiones Mathematicae 29 (1975), 39--80.Google ScholarGoogle ScholarCross RefCross Ref
  27. Nader Engheta, William D. Murphy, Vladimir Rokhlin, and Marius S. Vassiliou. 1992. The fast multipole method (FMM) for electromagnetic scattering problems. Transactions on Antennas and Propagation 40, 6 (1992), 634--641.Google ScholarGoogle ScholarCross RefCross Ref
  28. Ming Gao, Nathan Mitchell, and Eftychios Sifakis. 2014. Steklov-Poincaré skinning. In Proc. Symposium on Computer Animation. 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Alexandre Girouard, Jean Lagacé, Iosif Polterovich, and Alessandro Savo. 2017. The Steklov spectrum of cuboids. arXiv preprint arXiv:1711.03075 (2017).Google ScholarGoogle Scholar
  30. Alexandre Girouard and Iosif Polterovich. 2017. Spectral geometry of the Steklov problem. Journal of Spectral Theory 7, 2 (2017), 321--359.Google ScholarGoogle ScholarCross RefCross Ref
  31. Gerd Grubb. 2009. Pseudodifferential methods for boundary value problems. Distributions and operators. Springer Science and Business Media, 305--333.Google ScholarGoogle Scholar
  32. Wolfgang Hackbusch. 1999. A sparse matrix arithmetic based on H -matrices. Part I: Introduction to H-matrices. Computing 62, 2 (1999), 89--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Shoji Hamada. 2011. GPU-accelerated indirect boundary element method for voxel model analyses with fast multipole method. Computer Physics Communications 182, 5 (2011), 1162--1168.Google ScholarGoogle ScholarCross RefCross Ref
  34. Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier. 2010. Eigenmodes of surface energies for shape analysis.. In Proceedings of Geometric Modeling and Processing (GMP'10). Springer, 296--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Hugues Hoppe. 1996. Progressive meshes. In Proc. SIGGRAPH. 99--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Hajime Igarashi and Toshihisa Honma. 1996. A boundary element method for potential fields with corner singularities. Applied Mathematical Modelling 20, 11 (1996), 847--852.Google ScholarGoogle ScholarCross RefCross Ref
  37. John David Jackson. 1998. Classical electrodynamics. In Classical Electrodynamics, 3rd ed., John David Jackson (Ed.). Wiley-VCH, 832.Google ScholarGoogle Scholar
  38. Alec Jacobson. 2013. Algorithms and Interfaces for Real-time Deformation of 2d and 3d Shapes. Ph.D. Dissertation. ETH Zurich.Google ScholarGoogle Scholar
  39. Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust inside-outside segmentation using generalized winding numbers. ACM Transactions on Graphics (TOG) 32, 4 (2013), 33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Alexander Kachalov, Yaroslav Kurylev, and Matti Lassas. 2001. Inverse Boundary Spectral Problems. CRC Press.Google ScholarGoogle Scholar
  41. Ram P. Kanwal. 2013. Linear Integral Equations. Springer.Google ScholarGoogle Scholar
  42. Andrew V. Knyazev. 2001. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM Journal on Scientific Computing 23, 2 (2001), 517--541. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Iasonas Kokkinos, Michael M. Bronstein, Roee Litman, and Alex M. Bronstein. 2012. Intrinsic shape context descriptors for deformable shapes. In Proceedings of the Computer Vision and Pattern Recognition (CVPR'12). 159--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. John M. Lee and Gunther Uhlmann. 1989. Determining anisotropic real-analytic conductivities by boundary measurements. Communications on Pure and Applied Mathematics 42, 8 (1989), 1097--1112.Google ScholarGoogle ScholarCross RefCross Ref
  45. Michael Levitin, Leonid Parnovski, Iosif Polterovich, and David A. Sher. 2017. Sloshing, Steklov and corners I: Asymptotics of sloshing eigenvalues. arXiv Preprint arXiv:1709.01891 (2017).Google ScholarGoogle Scholar
  46. Jian Liang, Rongjie Lai, Tsz Wai Wong, and Hongkai Zhao. 2012. Geometric understanding of point clouds using Laplace--Beltrami operator. In Proceedings of the Computer Vision and Pattern Recognition (CVPR'12). 214--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Stéphane K. Lintner and Oscar P. Bruno. 2015. A generalized Calderón formula for open-arc diffraction problems: Theoretical considerations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 145, 2 (2015), 331--364.Google ScholarGoogle ScholarCross RefCross Ref
  48. Yaron Lipman, Raif M. Rustamov, and Thomas A. Funkhouser. 2010. Biharmonic distance. Transactions on Graphics 29, 3 (2010), 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Roee Litman, Alexander M. Bronstein, and Michael M. Bronstein. 2012. Stable volumetric features in deformable shapes. Computers 8 Graphics 36, 5 (2012), 569--576. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Haixiang Liu, Nathan Mitchell, Mridul Aanjaneya, and Eftychios Sifakis. 2016. A scalable Schur-complement fluids solver for heterogeneous compute platforms. Transactions on Graphics 35, 6 (2016), 201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Hsueh-Ti Derek Liu, Alec Jacobson, and Keenan Crane. 2017. A Dirac operator for extrinsic shape analysis. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 139--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. 2002. Shape distributions. Transactions on Graphics 21, 4 (2002), 807--832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. 2012. Functional maps: A flexible representation of maps between shapes. Transactions on Graphics 31, 4 (2012), 30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Giuseppe Patané. 2015. Volumetric heat kernel: Padé-Chebyshev approximation, convergence, and computation. Computers 8 Graphics 46 (2015), 64--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Giuseppe Patané. 2016. Laplacian spectral kernels and distances for geometry processing and shape analysis. In Computer Graphics Forum, Vol. 35. 599--624. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1 (1993), 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  57. Iosif Polterovich and David A. Sher. 2015. Heat invariants of the Steklov problem. Journal of Geometric Analysis 25, 2 (2015), 924--950.Google ScholarGoogle ScholarCross RefCross Ref
  58. Alfio Quarteroni and Alberto Valli. 1999. Domain Decomposition Methods for Partial Differential Equations. Oxford.Google ScholarGoogle Scholar
  59. Dan Raviv, Michael M. Bronstein, Alexander M. Bronstein, and Ron Kimmel. 2010. Volumetric heat kernel signatures. In Proceedings of the Workshop on 3D Object Retrieval (3DOR'10). 39--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Martin Reuter, Silvia Biasotti, Daniela Giorgi, Giuseppe Patanè, and Michela Spagnuolo. 2009. Discrete Laplace--Beltrami operators for shape analysis and segmentation. Computers 8 Graphics 33, 3 (2009), 381--390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. 2006. Laplace--Beltrami spectra as “Shape-DNA” of surfaces and solids. Computer-Aided Design 38, 4 (2006), 342--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Vladimir Rokhlin. 1985. Rapid solution of integral equations of classical potential theory. Journal of Computational Physics 60, 2 (1985), 187--207.Google ScholarGoogle ScholarCross RefCross Ref
  63. Raif M. Rustamov. 2011. Interpolated eigenfunctions for volumetric shape processing. Visual Computer 27, 11 (2011), 951--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Raif M. Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Leonidas Guibas. 2013. Map-based exploration of intrinsic shape differences and variability. Transactions on Graphics 32, 4 (2013), 72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Rohan Sawhney and Keenan Crane. 2017. Boundary first flattening. ACM Transactions on Graphics (TOG) 37, 1 (2017), 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Wojciech Śmigaj, Timo Betcke, Simon Arridge, Joel Phillips, and Martin Schweiger. 2015. Solving boundary integral problems with BEM++. Transactions on Mathematical Software 41, 2 (2015), 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Barry Smith, Petter Bjorstad, and William Gropp. 2004. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Olga Sorkine. 2005. Laplacian mesh processing. In Eurographics State of the Art Report.Google ScholarGoogle Scholar
  69. Olaf Steinbach. 2007. Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer.Google ScholarGoogle Scholar
  70. Olaf Steinbach and Wolfgang L. Wendland. 1998. The construction of some efficient preconditioners in the boundary element method. Advances in Computational Mathematics 9, 1--2 (1998), 191--216.Google ScholarGoogle ScholarCross RefCross Ref
  71. Mark J. Stock and Adrin Gharakhani. 2010. A GPU-accelerated boundary element method and vortex particle method. In AIAA 40th Fluid Dynamics Conference and Exhibit, Vol. 1.Google ScholarGoogle Scholar
  72. Martin Stoll and A. J. Wathen. 2007. The Bramble--Pasciak Preconditioner for Saddle Point Problems. Technical Report. University of Oxford.Google ScholarGoogle Scholar
  73. Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. 2009. A concise and provably informative multi-scale signature based on heat diffusion. In Computer Graphics Forum, Vol. 28. 1383--1392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Toru Takahashi and Tsuyoshi Hamada. 2009. GPU-accelerated boundary element method for Helmholtz equation in three dimensions. International Journal for Numerical Methods in Engineering 80, 10 (2009), 1295--1321.Google ScholarGoogle ScholarCross RefCross Ref
  75. Federico Tombari, Samuele Salti, and Luigi Di Stefano. 2010. Unique signatures of histograms for local surface description. In Proceedings of the European Conference on Computer Vision (ECCV'10). 356--369. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Andrea Toselli and Olof B. Widlund. 2005. Domain Decomposition Methods: Algorithms and Theory. Vol. 34. Springer.Google ScholarGoogle Scholar
  77. Bruno Vallet and Bruno Lévy. 2008. Spectral geometry processing with manifold harmonics. In Computer Graphics Forum, Vol. 27. 251--260.Google ScholarGoogle ScholarCross RefCross Ref
  78. Amir Vaxman, Mirela Ben-Chen, and Craig Gotsman. 2010. A multi-resolution approach to heat kernels on discrete surfaces. Transactions on Graphics 29, 4 (2010), 121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Gang Wang and Yalin Wang. 2015. Multi-scale heat kernel based volumetric morphology signature. In International Conference on Medical Image Computing and Computer-Assisted Intervention. 751--759.Google ScholarGoogle ScholarCross RefCross Ref
  80. Hao Wang, Tong Lu, Oscar Kin-Chung Au, and Chiew-Lan Tai. 2014. Spectral 3D mesh segmentation with a novel single segmentation field. Graphical Models 76, 5 (2014), 440--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Kenong Wu and Martin D. Levine. 1997. 3D part segmentation using simulated electrical charge distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 11 (1997), 1223--1235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Rio Yokota, Jaydeep P. Bardhan, Matthew G. Knepley, Lorena A. Barba, and Tsuyoshi Hamada. 2011. Biomolecular electrostatics using a fast multipole BEM on up to 512 GPUs and a billion unknowns. Computer Physics Communications 182, 6 (2011), 1272--1283.Google ScholarGoogle ScholarCross RefCross Ref
  83. Hao Zhang, Oliver Van Kaick, and Ramsay Dyer. 2010. Spectral mesh processing. In Computer Graphics Forum, Vol. 29. 1865--1894.Google ScholarGoogle ScholarCross RefCross Ref
  84. Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrangements for solid geometry. Transactions on Graphics 35, 4 (July 2016), 39:1--39:15. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Steklov Spectral Geometry for Extrinsic Shape Analysis

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 38, Issue 1
        February 2019
        176 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3300145
        Issue’s Table of Contents

        Copyright © 2018 Owner/Author

        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 14 December 2018
        • Accepted: 1 October 2018
        • Revised: 1 July 2018
        • Received: 1 July 2017
        Published in tog Volume 38, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format