research-article
Open Access

BootCMatch: A Software Package for Bootstrap AMG Based on Graph Weighted Matching

Authors Info & Claims
Published:16 June 2018Publication History
Skip Abstract Section

Abstract

This article has two main objectives: one is to describe some extensions of an adaptive Algebraic Multigrid (AMG) method of the form previously proposed by the first and third authors, and a second one is to present a new software framework, named BootCMatch, which implements all the components needed to build and apply the described adaptive AMG both as a stand-alone solver and as a preconditioner in a Krylov method. The adaptive AMG presented is meant to handle general symmetric and positive definite (SPD) sparse linear systems, without assuming any a priori information of the problem and its origin; the goal of adaptivity is to achieve a method with a prescribed convergence rate. The presented method exploits a general coarsening process based on aggregation of unknowns, obtained by a maximum weight matching in the adjacency graph of the system matrix. More specifically, a maximum product matching is employed to define an effective smoother subspace (complementary to the coarse space), a process referred to as compatible relaxation, at every level of the recursive two-level hierarchical AMG process.

Results on a large variety of test cases and comparisons with related work demonstrate the reliability and efficiency of the method and of the software.

References

  1. A. Abdullahi, P. D’Ambra, D. di Serafino, and S. Filippone. 2018. Parallel aggregation based on compatible weighted matching for AMG. In Large Scale Scientific Computing. LSSC 2017. (Lecture Notes in Computer Science), I. Lirkov and S. Margenov (Eds.), Vol. 10665. Springer, Cham, Switzerland, 563--571.Google ScholarGoogle Scholar
  2. P. R. Amestoy, I. S. Duff, J. Koster, and J. Y. L’Excellent. 2001. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (2001), 15--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Avila, A. Folch, G. Houzeaux, B. Eguzkitza, L. Prieto, and D. Cabezón. 2013. A parallel CFD model for wind farms. Procedia Computer Science 18 (2013), 2157--2166. International Conference on Computational Science, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  4. A. H. Baker, Tz. V. Kolev, and U. M. Yang. 2010. Improving algebraic multigrid interpolation operators for linear elasticity. Numer. Linear Algebra Appl. 17 (2010), 495--517.Google ScholarGoogle ScholarCross RefCross Ref
  5. D. P. Bertsekas. 1988. The auction algorithm: A distributed relaxation method for the assignment problem. Annals of Operations Research 14 (1988), 105--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. P. Bertsekas. 1992. Auction algorithms for network flow problems: A tutorial introduction. Computational Optimization and Applications 1 (1992), 7--66.Google ScholarGoogle ScholarCross RefCross Ref
  7. BootCMatch. 2017. Bootstrap algebraic multigrid based on compatible weighted matching. Retrieved from https://github.com/bootcmatch/BootCMatch.Google ScholarGoogle Scholar
  8. A. Brandt. 2000. General highly accurate algebraic coarsening. Electronic Transactions on Numerical Analysis 10 (2000), 1--20.Google ScholarGoogle Scholar
  9. A. Brandt, J. Brannick, K. Kahl, and I. Livshits. 2015. Algebraic distance for anisotropic diffusion problems: Multilevel results. Electronic Transactions on Numerical Analysis 44 (2015), 472--496.Google ScholarGoogle Scholar
  10. A. Brandt, J. Brannick, K. Kahl, and I. Livshits. 2015. Bootstrap algebraic multigrid: Status report, open problems, and outlook. Numerical Mathematics: Theory, Methods and Applications 8 (2015), 112--135.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Brandt, J. Brannick, K. Kahl, and I. Livshitz. 2011. Bootstrap AMG. SIAM J. Sci. Comput. 33 (2011), 612--632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Brandt, S. McCormick, and J. Ruge. 1985. Algebraic multigrid (AMG) for sparse matrix equations. In Sparsity and its Applications. Cambridge Univ. Press, Cambridge, 257--284.Google ScholarGoogle Scholar
  13. J. Brannick, Y. Chen, J. Kraus, and L. Zikatanov. 2013. Algebraic multilevel preconditioners for the graph Laplacian based on matching in graphs. SIAM J. Numer. Anal. 51 (2013), 1805--1827.Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Brannick, Y. Chen, and L. Zikatanov. 2012. An algebraic multilevel method for anisotropic elliptic equations based on subgraph matching. Numer. Linear Algebra Appl. 19 (2012), 279--295.Google ScholarGoogle ScholarCross RefCross Ref
  15. J. Brannick and R. D. Falgout. 2010. Compatible relaxation and coarsening in algebraic multigrid. SIAM J. Sci. Comput. 32 (2010), 1393--1416.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Brezina, R. D. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge. 2005. Adaptive smoothed aggregation SA multigrid. SIAM Rev. 47 (2005), 317--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Brezina, R. D. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge. 2006. Adaptive algebraic multigrid. SIAM J. Sci. Comput. 27 (2006), 1261--1286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. P. D’Ambra and P. S. Vassilevski. 2013. Adaptive AMG with coarsening based on compatible weighted matching. Comput. Visual Sci. 16 (2013), 59--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. D’Ambra and P. S. Vassilevski. 2016. Adaptive AMG based on weighted matching for systems of elliptic PDEs arising from displacement and mixed methods. In Progress in Industrial Mathematics at ECMI 2014 (Mathematics in Industry), Russo G. et al. (Eds.), Vol. 22. Springer-Verlag, Berlin, Germany, 1013--1020.Google ScholarGoogle Scholar
  20. T. A. Davis and Y. Hu. 2011. The University of Florida sparse matrix collection. ACM Trans. Math. Software 38, 1 (2011), 1:1--1:25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. Diestel. 2010. Graph Theory, 4th ed.Springer, Heidelberg, GTM 173.Google ScholarGoogle Scholar
  22. I. S. Duff and J. Koster. 2001. On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM J. Matrix Anal. Appl. 22 (2001), 973--996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. I. S. Duff and S. Pralet. 2005. Strategies for scaling and pivoting for sparse symmetric indefinite problems. SIAM J. Matrix Anal. Appl. 27 (2005), 313--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. D. Falgout, J. E. Jones, and U. Meyer Yang. 2006. The design and implementation of Hypre, a library of parallel high-performance preconditioners. In Numerical Solutions of Partial Differential Equations on Parallel Computers (Lecture Notes in Computational Science and Engineering), A. M. Bruaset and A. Tveito (Eds.), Vol. 15. Springer-Verlag, Berlin, Germany, 267--294.Google ScholarGoogle Scholar
  25. R. D. Falgout and P. S. Vassilevski. 2004. On generalizing the algebraic multigrid framework. SIAM J. Numer. Anal. 42 (2004), 1669--1693. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov. 2005. On two-grid convergence estimates. Numer. Linear Algebra Appl. 12 (2005), 471--494.Google ScholarGoogle ScholarCross RefCross Ref
  27. M. Hagemann and O. Schenk. 2006. Weighted matchings for preconditioning symmetric indefinite linear systems. SIAM J. Sci. Comput. 28 (2006), 403--420. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Halappanavar, J. Feo, O. Villa, A. Tumeo, and A. Pothen. 2012. Approximate weighted matching on emerging manycore and multithreaded architectures. Int. J. High Perform. Comput. Appl. 26 (2012), 413--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. Hogg. 2016. Sparse Parallel Robust Algorithms Library (SPRAL). Retrieved from https://github.com/ralna/spral.Google ScholarGoogle Scholar
  30. J. Hogg and J. Scott. 2013. Optimal weighted matchings for rank-deficient sparse matrices. SIAM J. Matrix Anal. Appl. 34 (2013), 1431--1447.Google ScholarGoogle ScholarCross RefCross Ref
  31. J. Hogg and J. Scott. 2015. On the use of suboptimal matchings for scaling and ordering sparse symmetric matrices. Numer. Linear Algebra Appl. 22 (2015), 648--663.Google ScholarGoogle ScholarCross RefCross Ref
  32. H. Kuhn. 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2 (1955), 83--97.Google ScholarGoogle ScholarCross RefCross Ref
  33. X. S. Li. 2005. An overview of SuperLU: Algorithms, implementation, and user interface. ACM Trans. Math. Software 31, 3 (September 2005), 302--325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. O. E. Livne. 2004. Coarsening by compatible relaxation. Num. Linear Alg. Appl. 11 (2004), 205--227.Google ScholarGoogle ScholarCross RefCross Ref
  35. M. Metcalf, J. Reid, and M. Cohen. 2011. Modern Fortran Explained (4th ed.). Oxford University Press, Inc., New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. MFEM. 2015. Modular finite element methods. mfem.org. (2015).Google ScholarGoogle Scholar
  37. A. Napov and Y. Notay. 2012. An algebraic multigrid method with guaranteed convergence rate. SIAM J. Sci. Comput. 34 (2012), A1079--A1109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Y. Notay. 2010. An aggregation-based algebraic multigrid method. Electronic Transactions on Numerical Analysis 37 (2010), 123--146.Google ScholarGoogle Scholar
  39. Y. Notay and P. S. Vassilevski. 2008. Recursive Krylov-based multigrid cycles. Numer. Linear Algebra Appl. 15 (2008), 473--487.Google ScholarGoogle ScholarCross RefCross Ref
  40. A. Pothen, F. Dobrian, and M. Halappanavar. 2013. Matchbox, a library of graph matching algorithms. (2013). http://www.cs.odu.edu/ mhalappa/matching/.Google ScholarGoogle Scholar
  41. R. Preis. 1999. Linear time 1/2-approximation algorithm for maximum weighted matching in general graphs. In STACS’99 (Lecture Notes in Computer Science), J. Dongarra, K. Madsen, and J. Wasniewski (Eds.), Vol. 1563. Springer-Verlag, Berlin, Germany, 259--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. W. Ruge. 1986. AMG for problems of elasticity. Appl. Math. Comput. 19 (1986), 293--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. J. W. Ruge and K. Stüben. 1987. Algebraic multigrid (AMG). In Multigrid Methods, S. F. McCormick (Ed.). SIAM, Philadelphia, 73--130.Google ScholarGoogle Scholar
  44. M. Sathe, O. Schenk, and H. Burkhart. 2012. An auction-based weighted matching implementation on massively parallel architectures. Parallel Comput. 38 (2012), 595--614. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. The Numerical Analysis Group. 2011. HSL (2011). A collection of Fortran codes for large scale scientific computation. (2011). http://www.hsl.rl.ac.uk.Google ScholarGoogle Scholar
  46. P. Vaněk, J. Mandel, and M. Brezina. 1996. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.Computing 56, 3 (1996), 179--196.Google ScholarGoogle Scholar
  47. P. S. Vassilevski. 2008. Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations. Springer, New York.Google ScholarGoogle Scholar

Index Terms

  1. BootCMatch: A Software Package for Bootstrap AMG Based on Graph Weighted Matching

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format
    About Cookies On This Site

    We use cookies to ensure that we give you the best experience on our website.

    Learn more

    Got it!