Abstract
This article has two main objectives: one is to describe some extensions of an adaptive Algebraic Multigrid (AMG) method of the form previously proposed by the first and third authors, and a second one is to present a new software framework, named BootCMatch, which implements all the components needed to build and apply the described adaptive AMG both as a stand-alone solver and as a preconditioner in a Krylov method. The adaptive AMG presented is meant to handle general symmetric and positive definite (SPD) sparse linear systems, without assuming any a priori information of the problem and its origin; the goal of adaptivity is to achieve a method with a prescribed convergence rate. The presented method exploits a general coarsening process based on aggregation of unknowns, obtained by a maximum weight matching in the adjacency graph of the system matrix. More specifically, a maximum product matching is employed to define an effective smoother subspace (complementary to the coarse space), a process referred to as compatible relaxation, at every level of the recursive two-level hierarchical AMG process.
Results on a large variety of test cases and comparisons with related work demonstrate the reliability and efficiency of the method and of the software.
- A. Abdullahi, P. D’Ambra, D. di Serafino, and S. Filippone. 2018. Parallel aggregation based on compatible weighted matching for AMG. In Large Scale Scientific Computing. LSSC 2017. (Lecture Notes in Computer Science), I. Lirkov and S. Margenov (Eds.), Vol. 10665. Springer, Cham, Switzerland, 563--571.Google Scholar
- P. R. Amestoy, I. S. Duff, J. Koster, and J. Y. L’Excellent. 2001. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (2001), 15--41. Google Scholar
Digital Library
- M. Avila, A. Folch, G. Houzeaux, B. Eguzkitza, L. Prieto, and D. Cabezón. 2013. A parallel CFD model for wind farms. Procedia Computer Science 18 (2013), 2157--2166. International Conference on Computational Science, 2013.Google Scholar
Cross Ref
- A. H. Baker, Tz. V. Kolev, and U. M. Yang. 2010. Improving algebraic multigrid interpolation operators for linear elasticity. Numer. Linear Algebra Appl. 17 (2010), 495--517.Google Scholar
Cross Ref
- D. P. Bertsekas. 1988. The auction algorithm: A distributed relaxation method for the assignment problem. Annals of Operations Research 14 (1988), 105--123. Google Scholar
Digital Library
- D. P. Bertsekas. 1992. Auction algorithms for network flow problems: A tutorial introduction. Computational Optimization and Applications 1 (1992), 7--66.Google Scholar
Cross Ref
- BootCMatch. 2017. Bootstrap algebraic multigrid based on compatible weighted matching. Retrieved from https://github.com/bootcmatch/BootCMatch.Google Scholar
- A. Brandt. 2000. General highly accurate algebraic coarsening. Electronic Transactions on Numerical Analysis 10 (2000), 1--20.Google Scholar
- A. Brandt, J. Brannick, K. Kahl, and I. Livshits. 2015. Algebraic distance for anisotropic diffusion problems: Multilevel results. Electronic Transactions on Numerical Analysis 44 (2015), 472--496.Google Scholar
- A. Brandt, J. Brannick, K. Kahl, and I. Livshits. 2015. Bootstrap algebraic multigrid: Status report, open problems, and outlook. Numerical Mathematics: Theory, Methods and Applications 8 (2015), 112--135.Google Scholar
Cross Ref
- A. Brandt, J. Brannick, K. Kahl, and I. Livshitz. 2011. Bootstrap AMG. SIAM J. Sci. Comput. 33 (2011), 612--632. Google Scholar
Digital Library
- A. Brandt, S. McCormick, and J. Ruge. 1985. Algebraic multigrid (AMG) for sparse matrix equations. In Sparsity and its Applications. Cambridge Univ. Press, Cambridge, 257--284.Google Scholar
- J. Brannick, Y. Chen, J. Kraus, and L. Zikatanov. 2013. Algebraic multilevel preconditioners for the graph Laplacian based on matching in graphs. SIAM J. Numer. Anal. 51 (2013), 1805--1827.Google Scholar
Cross Ref
- J. Brannick, Y. Chen, and L. Zikatanov. 2012. An algebraic multilevel method for anisotropic elliptic equations based on subgraph matching. Numer. Linear Algebra Appl. 19 (2012), 279--295.Google Scholar
Cross Ref
- J. Brannick and R. D. Falgout. 2010. Compatible relaxation and coarsening in algebraic multigrid. SIAM J. Sci. Comput. 32 (2010), 1393--1416.Google Scholar
Digital Library
- M. Brezina, R. D. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge. 2005. Adaptive smoothed aggregation SA multigrid. SIAM Rev. 47 (2005), 317--346. Google Scholar
Digital Library
- M. Brezina, R. D. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge. 2006. Adaptive algebraic multigrid. SIAM J. Sci. Comput. 27 (2006), 1261--1286. Google Scholar
Digital Library
- P. D’Ambra and P. S. Vassilevski. 2013. Adaptive AMG with coarsening based on compatible weighted matching. Comput. Visual Sci. 16 (2013), 59--76. Google Scholar
Digital Library
- P. D’Ambra and P. S. Vassilevski. 2016. Adaptive AMG based on weighted matching for systems of elliptic PDEs arising from displacement and mixed methods. In Progress in Industrial Mathematics at ECMI 2014 (Mathematics in Industry), Russo G. et al. (Eds.), Vol. 22. Springer-Verlag, Berlin, Germany, 1013--1020.Google Scholar
- T. A. Davis and Y. Hu. 2011. The University of Florida sparse matrix collection. ACM Trans. Math. Software 38, 1 (2011), 1:1--1:25. Google Scholar
Digital Library
- R. Diestel. 2010. Graph Theory, 4th ed.Springer, Heidelberg, GTM 173.Google Scholar
- I. S. Duff and J. Koster. 2001. On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM J. Matrix Anal. Appl. 22 (2001), 973--996. Google Scholar
Digital Library
- I. S. Duff and S. Pralet. 2005. Strategies for scaling and pivoting for sparse symmetric indefinite problems. SIAM J. Matrix Anal. Appl. 27 (2005), 313--340. Google Scholar
Digital Library
- R. D. Falgout, J. E. Jones, and U. Meyer Yang. 2006. The design and implementation of Hypre, a library of parallel high-performance preconditioners. In Numerical Solutions of Partial Differential Equations on Parallel Computers (Lecture Notes in Computational Science and Engineering), A. M. Bruaset and A. Tveito (Eds.), Vol. 15. Springer-Verlag, Berlin, Germany, 267--294.Google Scholar
- R. D. Falgout and P. S. Vassilevski. 2004. On generalizing the algebraic multigrid framework. SIAM J. Numer. Anal. 42 (2004), 1669--1693. Google Scholar
Digital Library
- R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov. 2005. On two-grid convergence estimates. Numer. Linear Algebra Appl. 12 (2005), 471--494.Google Scholar
Cross Ref
- M. Hagemann and O. Schenk. 2006. Weighted matchings for preconditioning symmetric indefinite linear systems. SIAM J. Sci. Comput. 28 (2006), 403--420. Google Scholar
Digital Library
- M. Halappanavar, J. Feo, O. Villa, A. Tumeo, and A. Pothen. 2012. Approximate weighted matching on emerging manycore and multithreaded architectures. Int. J. High Perform. Comput. Appl. 26 (2012), 413--430. Google Scholar
Digital Library
- J. Hogg. 2016. Sparse Parallel Robust Algorithms Library (SPRAL). Retrieved from https://github.com/ralna/spral.Google Scholar
- J. Hogg and J. Scott. 2013. Optimal weighted matchings for rank-deficient sparse matrices. SIAM J. Matrix Anal. Appl. 34 (2013), 1431--1447.Google Scholar
Cross Ref
- J. Hogg and J. Scott. 2015. On the use of suboptimal matchings for scaling and ordering sparse symmetric matrices. Numer. Linear Algebra Appl. 22 (2015), 648--663.Google Scholar
Cross Ref
- H. Kuhn. 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2 (1955), 83--97.Google Scholar
Cross Ref
- X. S. Li. 2005. An overview of SuperLU: Algorithms, implementation, and user interface. ACM Trans. Math. Software 31, 3 (September 2005), 302--325. Google Scholar
Digital Library
- O. E. Livne. 2004. Coarsening by compatible relaxation. Num. Linear Alg. Appl. 11 (2004), 205--227.Google Scholar
Cross Ref
- M. Metcalf, J. Reid, and M. Cohen. 2011. Modern Fortran Explained (4th ed.). Oxford University Press, Inc., New York, NY. Google Scholar
Digital Library
- MFEM. 2015. Modular finite element methods. mfem.org. (2015).Google Scholar
- A. Napov and Y. Notay. 2012. An algebraic multigrid method with guaranteed convergence rate. SIAM J. Sci. Comput. 34 (2012), A1079--A1109. Google Scholar
Digital Library
- Y. Notay. 2010. An aggregation-based algebraic multigrid method. Electronic Transactions on Numerical Analysis 37 (2010), 123--146.Google Scholar
- Y. Notay and P. S. Vassilevski. 2008. Recursive Krylov-based multigrid cycles. Numer. Linear Algebra Appl. 15 (2008), 473--487.Google Scholar
Cross Ref
- A. Pothen, F. Dobrian, and M. Halappanavar. 2013. Matchbox, a library of graph matching algorithms. (2013). http://www.cs.odu.edu/ mhalappa/matching/.Google Scholar
- R. Preis. 1999. Linear time 1/2-approximation algorithm for maximum weighted matching in general graphs. In STACS’99 (Lecture Notes in Computer Science), J. Dongarra, K. Madsen, and J. Wasniewski (Eds.), Vol. 1563. Springer-Verlag, Berlin, Germany, 259--269. Google Scholar
Digital Library
- J. W. Ruge. 1986. AMG for problems of elasticity. Appl. Math. Comput. 19 (1986), 293--309. Google Scholar
Digital Library
- J. W. Ruge and K. Stüben. 1987. Algebraic multigrid (AMG). In Multigrid Methods, S. F. McCormick (Ed.). SIAM, Philadelphia, 73--130.Google Scholar
- M. Sathe, O. Schenk, and H. Burkhart. 2012. An auction-based weighted matching implementation on massively parallel architectures. Parallel Comput. 38 (2012), 595--614. Google Scholar
Digital Library
- The Numerical Analysis Group. 2011. HSL (2011). A collection of Fortran codes for large scale scientific computation. (2011). http://www.hsl.rl.ac.uk.Google Scholar
- P. Vaněk, J. Mandel, and M. Brezina. 1996. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.Computing 56, 3 (1996), 179--196.Google Scholar
- P. S. Vassilevski. 2008. Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations. Springer, New York.Google Scholar
Index Terms
BootCMatch: A Software Package for Bootstrap AMG Based on Graph Weighted Matching





Comments