skip to main content
research-article

Point convolutional neural networks by extension operators

Published:30 July 2018Publication History
Skip Abstract Section

Abstract

This paper presents Point Convolutional Neural Networks (PCNN): a novel framework for applying convolutional neural networks to point clouds. The framework consists of two operators: extension and restriction, mapping point cloud functions to volumetric functions and vise-versa. A point cloud convolution is defined by pull-back of the Euclidean volumetric convolution via an extension-restriction mechanism.

The point cloud convolution is computationally efficient, invariant to the order of points in the point cloud, robust to different samplings and varying densities, and translation invariant, that is the same convolution kernel is used at all points. PCNN generalizes image CNNs and allows readily adapting their architectures to the point cloud setting.

Evaluation of PCNN on three central point cloud learning benchmarks convincingly outperform competing point cloud learning methods, and the vast majority of methods working with more informative shape representations such as surfaces and/or normals.

Skip Supplemental Material Section

Supplemental Material

a71-atzmon.mp4

References

  1. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). https://www.tensorflow.org/ Software available from tensorflow.org.Google ScholarGoogle Scholar
  2. Mikhail Belkin and Partha Niyogi. 2005. Towards a theoretical foundation for Laplacian-based manifold methods.. In COLT, Vol. 3559. Springer, 486--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9 (1975), 509--517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Gael Guennebaud, Joshua A Levine, Andrei Sharf, and Claudio T Silva. 2017. A survey of surface reconstruction from point clouds. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 301--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael M. Bronstein. 2016. Learning shape correspondence with anisotropic convolutional neural networks. In NIPS. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. 2016. Generative and discriminative voxel modeling with convolutional neural networks. arXiv preprint arXiv:1608.04236 (2016).Google ScholarGoogle Scholar
  7. Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine 34, 4 (2017), 18--42.Google ScholarGoogle Scholar
  8. David S Broomhead and David Lowe. 1988. Radial basis functions, multi-variable functional interpolation and adaptive networks. Technical Report. Royal Signals and Radar Establishment Malvern (United Kingdom).Google ScholarGoogle Scholar
  9. Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013).Google ScholarGoogle Scholar
  10. Yu D Burago and Viktor A Zalgaller. 2013. Geometry III: theory of surfaces. Vol. 48. Springer Science & Business Media.Google ScholarGoogle Scholar
  11. Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J Mitchell, W Richard Fright, Bruce C McCallum, and Tim R Evans. 2001. Reconstruction and representation of 3D objects with radial basis functions. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, 67--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger. 2016. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 424--432.Google ScholarGoogle Scholar
  13. Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. 2017. Deformable Convolutional Networks. arXiv preprint arXiv:1703.06211 (2017).Google ScholarGoogle Scholar
  14. Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems. 3837--3845. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Manfredo P Do Carmo, Gerd Fischer, Ulrich Pinkall, and Helmut Reckziegel. 2017. Differential Geometry. In Mathematical Models. Springer, 155--180.Google ScholarGoogle Scholar
  16. Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J Mitra. 2017. PCP-NET: Learning Local Shape Properties from Raw Point Clouds. arXiv preprint arXiv:1710.04954 (2017).Google ScholarGoogle Scholar
  17. Vishakh Hegde and Reza Zadeh. 2016. Fusionnet: 3d object classification using multiple data representations. arXiv preprint arXiv:1607.05695 (2016).Google ScholarGoogle Scholar
  18. Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 (2015).Google ScholarGoogle Scholar
  19. Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, and Siddhartha Chaudhuri. 2016. 3D Shape Segmentation with Projective Convolutional Networks. arXiv preprint arXiv:1612.02808 (2016).Google ScholarGoogle Scholar
  20. Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017).Google ScholarGoogle Scholar
  21. Roman Klokov and Victor Lempitsky. 2017. Escape from Cells: Deep Kd-Networks for The Recognition of 3D Point Cloud Models. arXiv preprint arXiv:1704.01222 (2017).Google ScholarGoogle Scholar
  22. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. 1097--1105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Yangyan Li, Rui Bu, Mingchao Sun, and Baoquan Chen. 2018. PointCNN. arXiv preprint arXiv:1801.07791 (2018).Google ScholarGoogle Scholar
  24. Yangyan Li, Soeren Pirk, Hao Su, Charles R Qi, and Leonidas J Guibas. 2016. Fpnn: Field probing neural networks for 3d data. In Advances in Neural Information Processing Systems. 307--315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer, VLADIMIR G KIM, and Yaron Lipman. 2017. Convolutional Neural Networks on Surfaces via Seamless Toric Covers. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. 2015. Geodesic convolutional neural networks on riemannian manifolds. In Proceedings of the IEEE International Conference on Computer Vision Workshops. 37--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Daniel Maturana and Sebastian Scherer. 2015. Voxnet: A 3d convolutional neural network for real-time object recognition. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE, 922--928.Google ScholarGoogle ScholarCross RefCross Ref
  28. Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and Michael M Bronstein. 2016. Geometric deep learning on graphs and manifolds using mixture model CNNs. arXiv preprint arXiv:1611.08402 (2016).Google ScholarGoogle Scholar
  29. Elizbar A Nadaraya. 1964. On estimating regression. Theory of Probability & Its Applications 9, 1 (1964), 141--142.Google ScholarGoogle ScholarCross RefCross Ref
  30. Mark JL Orr. 1999. Recent advances in radial basis function networks. Institute for Adaptative and Neural Computation (1999).Google ScholarGoogle Scholar
  31. Mark JL Orr et al. 1996. Introduction to radial basis function networks. (1996).Google ScholarGoogle Scholar
  32. Jooyoung Park and Irwin W Sandberg. 1991. Universal approximation using radial-basis-function networks. Neural computation 3, 2 (1991), 246--257.Google ScholarGoogle Scholar
  33. Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2016a. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. arXiv preprint arXiv:1612.00593 (2016).Google ScholarGoogle Scholar
  34. Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas Guibas. 2016b. Volumetric and Multi-View CNNs for Object Classification on 3D Data. In Proc. Computer Vision and Pattern Recognition (CVPR), IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  35. Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. arXiv preprint arXiv:1706.02413 (2017).Google ScholarGoogle Scholar
  36. Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. 2016. Deep learning with sets and point clouds. arXiv preprint arXiv:1611.04500 (2016).Google ScholarGoogle Scholar
  37. Gernot Riegler, Ali Osman Ulusoys, and Andreas Geiger. 2016. Octnet: Learning deep 3d representations at high resolutions. arXiv preprint arXiv:1611.05009 (2016).Google ScholarGoogle Scholar
  38. Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko, and Klaus-Robert Müller. 2017. MolecuLeNet: A continuous-filter convolutional neural network for modeling quantum interactions. In Advances in Neural Information Processing Systems. 992--1002.Google ScholarGoogle Scholar
  39. Martin Simonovsky and Nikos Komodakis. 2017. Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs. arXiv preprint arXiv:1704.02901 (2017).Google ScholarGoogle Scholar
  40. Ayan Sinha, Jing Bai, and Karthik Ramani. 2016. Deep learning 3D shape surfaces using geometry images. In European Conference on Computer Vision. Springer, 223--240.Google ScholarGoogle ScholarCross RefCross Ref
  41. Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-view convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE International Conference on Computer Vision. 945--953. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM Transactions on Graphics (TOG) 36, 4 (2017), 72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. 2018. Dynamic Graph CNN for Learning on Point Clouds. arXiv preprint arXiv:1801.07829 (2018).Google ScholarGoogle Scholar
  44. Eric W Weisstein. 2000. Normal sum distribution. (2000).Google ScholarGoogle Scholar
  45. Holger Wendland. 2004. Scattered data approximation. Vol. 17. Cambridge university press.Google ScholarGoogle Scholar
  46. Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1912--1920.Google ScholarGoogle Scholar
  47. Li Yi, Vladimir G Kim, Duygu Ceylan, I Shen, Mengyan Yan, Hao Su, ARCewu Lu, Qixing Huang, Alia Sheffer, Leonidas Guibas, et al. 2016a. A scalable active framework for region annotation in 3d shape collections. ACM Transactions on Graphics (TOG) 35, 6 (2016), 210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Li Yi, Hao Su, Xingwen Guo, and Leonidas Guibas. 2016b. SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation. arXiv preprint arXiv:1612.00606 (2016).Google ScholarGoogle Scholar
  49. Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander Smola. 2017. Deep Sets. arXiv preprint arXiv:1703.06114 (2017).Google ScholarGoogle Scholar

Index Terms

  1. Point convolutional neural networks by extension operators

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 37, Issue 4
        August 2018
        1670 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3197517
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 30 July 2018
        Published in tog Volume 37, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader