skip to main content
research-article
Public Access

Developability of triangle meshes

Published:30 July 2018Publication History
Skip Abstract Section

Abstract

Developable surfaces are those that can be made by smoothly bending flat pieces without stretching or shearing. We introduce a definition of developability for triangle meshes which exactly captures two key properties of smooth developable surfaces, namely flattenability and presence of straight ruling lines. This definition provides a starting point for algorithms in developable surface modeling---we consider a variational approach that drives a given mesh toward developable pieces separated by regular seam curves. Computation amounts to gradient descent on an energy with support in the vertex star, without the need to explicitly cluster patches or identify seams. We briefly explore applications to developable design and manufacturing.

Skip Supplemental Material Section

Supplemental Material

a77-stein.mp4
077-217.mp4

References

  1. Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun. 2006. A Quadratic Bending Model for Inextensible Surfaces. In Symposium on Geometry Processing, Alla Sheffer and Konrad Polthier (Eds.). The Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. Berkmann and T. Caelli. 1994. Computation of Surface Geometry and Segmentation using Covariance Techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 11 (1994), 1114--1116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Alexander Bobenko. 2008. Discrete Differential Geometry. Springer London, Limited.Google ScholarGoogle Scholar
  4. Vincent Borrelli, Saïd Jabrane, Francis Lazarus, and Boris Thibert. 2012. Flat tori in three-dimensional space and convex integration. Proc. Natl. Acad. Sci. U. S. A. 109, 19 (2012), 7218--7223.Google ScholarGoogle ScholarCross RefCross Ref
  5. Davide P Cervone. 1996. Tight immersions of simplicial surfaces in three space. Topology 35, 4 (1996), 863 -- 873.Google ScholarGoogle ScholarCross RefCross Ref
  6. Lian Chang. 2015. The Software Behind Frank Gehry's Geometrically Complex Architecture. (2015). https://priceonomics.com/the-software-behind-frank-gehrys-geometrically/ Online (Priceonomics.com); posted May 12, 2015.Google ScholarGoogle Scholar
  7. Chih-Hsing Chu and Jang-Ting Chen. 2005. Tool path planning for five-axis flank milling with developable surface approximation. The International Journal of Advanced Manufacturing Technology 29, 7 (12 Oct 2005), 707.Google ScholarGoogle Scholar
  8. Keenan Crane and Max Wardetzky. 2017. A Glimpse Into Discrete Differential Geometry. Notices of the American Mathematical Society 64, 10 (November 2017), 1153--1159.Google ScholarGoogle ScholarCross RefCross Ref
  9. Philippe Decaudin, Dan Julius, Jamie Wither, Laurence Boissieux, Alla Sheffer, and Marie-Paule Cani. 2006. Virtual Garments: A Fully Geometric Approach for Clothing Design. Computer Graphics Forum (2006).Google ScholarGoogle Scholar
  10. Levi H Dudte, Etienne Vouga, Tomohiro Tachi, and L Mahadevan. 2016. Programming curvature using origami tessellations. Nature materials (2016).Google ScholarGoogle Scholar
  11. Jeff Erickson and Sariel Har-Peled. 2004. Optimally Cutting a Surface into a Disk. Discrete & Computational Geometry 31, 1 (2004), 37--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Michael Garland. 1999. Quadric-Based Polygonal Surface Simplification. Ph.D. Dissertation. Carnegie Mellon University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric Error Metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '97). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ramy F. Harik, Hu Gong, and Alain Bernard. 2013. Review: 5-axis Flank Milling: A State-of-the-art Review. Comput. Aided Des. 45, 3 (March 2013), 796--808. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant Field-aligned Meshes. ACM Trans. Graph. 34, 6, Article 189 (Oct. 2015), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Dan Julius, Vladislav Kraevoy, and Alla Sheffer. 2005. D-Charts: Quasi-Developable Mesh Segmentation. Computer Graphics Forum (2005).Google ScholarGoogle Scholar
  17. Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy J. Mitra, Alla Sheffer, and Helmut Pottmann. 2008. Curved Folding. ACM Trans. Graph. 27, 3, Article 75 (Aug. 2008), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Kopp. 2008. Efficient Numerical Diagonalization of Hermitian 3 X 3 Matrices. International Journal of Modern Physics C 19 (2008), 523--548.Google ScholarGoogle ScholarCross RefCross Ref
  19. Adrian S. Lewis and Michael L. Overton. 2013. Nonsmooth optimization via quasi-Newton methods. Math. Program. A, 141 (2013), 135--163.Google ScholarGoogle ScholarCross RefCross Ref
  20. Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang. 2006. Geometric Modeling with Conical Meshes and Developable Surfaces. ACM Trans. Graph. 25, 3 Quly 2006), 681--689. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Fady Massarwi, Craig Gotsman, and Gershon Elber. 2007. Papercraft Models using Generalized Cylinders. In Proceedings of the Pacific Conference on Computer Graphics and Applications, Pacific Graphics 2007, Maui, Hawaii, USA, October 29 - November 2, 2007. 148--157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jun Mitani and Hiromasa Suzuki. 2004. Making Papercraft Toys from Meshes Using Strip-based Approximate Unfolding. ACM Trans. Graph. 23, 3 (Aug. 2004), 259--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jean-Marie Morvan and Boris Thibert. 2006. Unfolding of Surfaces. Discrete & Computational Geometry 36, 3 (01 Oct 2006), 393--418.Google ScholarGoogle Scholar
  24. Rahul Narain, Tobias Pfaff, and James F. O'Brien. 2013. Folding and Crumpling Adaptive Sheets. ACM Transactions on Graphics 32, 4 (July 2013), 51:1--8. http://graphics.berkeley.edu/papers/Narain-FCA-2013-07/ Proceedings of ACM SIGGRAPH 2013, Anaheim. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2nd ed.). Springer.Google ScholarGoogle Scholar
  26. Martin Peternell. 2004. Developable Surface Fitting to Point Clouds. Comput. Aided Geom. Des. 21, 8 (Oct. 2004), 785--803. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung. 2017. Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping. ACM Trans. on Graphics - Siggraph Asia 2017 36, 6 (2017). http://vcg.isti.cnr.it/Publications/2017/PTHPS17 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Helmut Pottmann, Alexander Schiftner, Pengbo Bo, Heinz Schmiedhofer, Wenping Wang, Niccolo Baldassini, and Johannes Wallner. 2008. Freeform Surfaces from Single Curved Panels. ACM Trans. Graph. 27, 3, Article 76 (Aug. 2008), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018. Discrete Geodesic Nets for Modeling Developable Surfaces. ACM Trans. Graph. 37, 2, Article 16 (Feb. 2018), 17 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kenneth Rose, Alla Sheffer, Jamie Wither, Marie-Paule Cani, and Boris Thibert. 2007. Developable Surfaces from Arbitrary Sketched Boundaries. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP '07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 163--172. http://dl.acm.org/citation.cfm?id=1281991.1282014 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Robert Sauer. 1970. Differenzengeometrie. Springer.Google ScholarGoogle Scholar
  32. Rohan Sawhney and Keenan Crane. 2017. Boundary First Flattening. CoRR abs/1704.06873 (2017). arXiv:1704.06873 http://arxiv.org/abs/1704.06873 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Camille Schreck, Damien Rohmer, Stefanie Hahmann, Marie-Paule Cani, Shuo Jin, Charlie C.L. Wang, and Jean-Francis Bloch. 2015. Non-smooth developable geometry for interactively animating paper crumpling. ACM Transactions on Graphics 35, 1 (Dec. 2015), 10:1--10:18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Idan Shatz, Ayellet Tal, and George Leifman. 2006. Paper craft models from meshes. The Visual Computer 22, 9--11 (2006), 825--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Justin Solomon, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2012. Flexible Developable Surfaces. Computer Graphics Forum (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski. 2002. Bounded-distortion Piecewise Mesh Parameterization. In Proceedings of the Conference on Visualization '02 (VIS '02). IEEE Computer Society, Washington, DC, USA, 355--362. http://dl.acm.org/citation.cfm?id=602099.602154 Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. 2016. Interactive Design of Developable Surfaces. ACM Trans. Graph. 35, 2, Article 12 (Jan. 2016), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Boris Thibert, Jean-Pierre Gratier, and Jean-Marie Morvan. 2005. A direct method for modeling and unfolding developable surfaces and its application to the Ventura Basin (California). Journal of Structural Geology 27, 2 (2005), 303--316.Google ScholarGoogle ScholarCross RefCross Ref
  39. Charlie CL Wang and Kai Tang. 2004. Achieving developability of a polygonal surface by minimum deformation: a study of global and local optimization approaches. The Visual Computer 20, 8 (2004), 521--539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yong-Liang Yang, Yi-Jun Yang, Helmut Pottmann, and Niloy J. Mitra. 2011. Shape Space Exploration of Constrained Meshes. ACM Trans. Graph. 30, 6, Article 124 (Dec. 2011), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Developability of triangle meshes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 37, Issue 4
        August 2018
        1670 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3197517
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 30 July 2018
        Published in tog Volume 37, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader