skip to main content
research-article

Deep learning of biomimetic sensorimotor control for biomechanical human animation

Published:30 July 2018Publication History
Skip Abstract Section

Abstract

We introduce a biomimetic framework for human sensorimotor control, which features a biomechanically simulated human musculoskeletal model actuated by numerous muscles, with eyes whose retinas have nonuniformly distributed photoreceptors. The virtual human's sensorimotor control system comprises 20 trained deep neural networks (DNNs), half constituting the neuromuscular motor subsystem, while the other half compose the visual sensory subsystem. Directly from the photoreceptor responses, 2 vision DNNs drive eye and head movements, while 8 vision DNNs extract visual information required to direct arm and leg actions. Ten DNNs achieve neuromuscular control---2 DNNs control the 216 neck muscles that actuate the cervicocephalic musculoskeletal complex to produce natural head movements, and 2 DNNs control each limb; i.e., the 29 muscles of each arm and 39 muscles of each leg. By synthesizing its own training data, our virtual human automatically learns efficient, online, active visuomotor control of its eyes, head, and limbs in order to perform nontrivial tasks involving the foveation and visual pursuit of target objects coupled with visually-guided limb-reaching actions to intercept the moving targets, as well as to carry out drawing and writing tasks.

Skip Supplemental Material Section

Supplemental Material

a56-nakada.mp4

References

  1. J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio. 2010. Theano: A CPU and GPU math compiler in Python. In Proc. 9th Python in Science Conference. Austin, TX, 1--7.Google ScholarGoogle Scholar
  2. A.L. Cruz Ruiz, C. Pontonnier, N. Pronost, and G. Dumont. 2017. Muscle-based control for character animation. Computer Graphics Forum 36, 6 (2017), 122--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. F. Deering. 2005. A photon accurate model of the human eye. ACM Transactions on Graphics 24, 3 (2005), 649--658. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. Faloutsos, M. van de Panne, and D. Terzopoulos. 2001. Composable controllers for physics-based character animation. In Proc. 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). Los Angeles, CA, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Y. Fan, J. Litven, and D.K. Pai. 2014. Active volumetric musculoskeletal systems. ACM Transactions on Graphics 33, 4 (2014), 152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Featherstone. 2014. Rigid Body Dynamics Algorithms. Springer, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T. Geijtenbeek, M. Van De Panne, and A.F. Van Der Stappen. 2013. Flexible muscle-based locomotion for bipedal creatures. ACM Transactions on Graphics 32, 6 (2013), 206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. I. Goodfellow, Y. Bengio, and A. Courville. 2016. Deep Learning. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. Grzeszczuk, D. Terzopoulos, and G. Hinton. 1998. NeuroAnimator: Fast neural network emulation and control of physics-based models. In Computer Graphics Proceedings, Annual Conference Series. Orlando, FL, 9--20. Proc. ACM SIGGRAPH 98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. K. He, X. Zhang, S. Ren, and J. Sun. 2015. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proc. IEEE International Conference on Computer Vision. Santiago, Chile, 1026--1034. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J.K. Hodgins, W.L. Wooten, D.C. Brogan, and J.F. O'Brien. 1995. Animating human athletics. In Proc. ACM SIGGRAPH '95 Conference. Los Angeles, CA, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Holden, T. Komura, and J. Saito. 2017. Phase-functioned neural networks for character control. ACM Transactions on Graphics 36, 4 (2017), 42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. W. Huang, M. Kapadia, and D. Terzopoulos. 2010. Full-body hybrid motor control for reaching. In Motion in Games (Lecture Notes in Computer Science, Vol. 6459). Springer-Verlag, Berlin, 36--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A.-E. Ichim, P. Kadleček, L. Kavan, and M. Pauly. 2017. Phace: Physics-based face modeling and animation. ACM Transactions on Graphics 36, 4 (2017), 153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. Kadleček, A.-E. Ichim, T. Liu, J. Křivánek, and L. Kavan. 2016. Reconstructing personalized anatomical models for physics-based body animation. ACM Transactions on Graphics 35, 6 (2016), 213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. K. Kähler, J. Haber, H. Yamauchi, and H.-P. Seidel. 2002. Head shop: Generating animated head models with anatomical structure. In Proc. 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. San Antonio, TX, 55--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Kingma and J. Ba. 2014. Adam: A method for stochastic optimization. Technical Report. arXiv preprint arXiv:1412.6980.Google ScholarGoogle Scholar
  18. S.-H. Lee, E. Sifakis, and D. Terzopoulos. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Transactions on Graphics 28, 4 (2009), 99:1--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S.-H. Lee and D. Terzopoulos. 2006. Heads Up! Biomechanical modeling and neuromuscular control of the neck. ACM Transactions on Graphics 23, 212 (2006), 1188--1198. Proc. ACM SIGGRAPH 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Y. Lee, M.S. Park, T. Kwon, and J. Lee. 2014. Locomotion control for many-muscle humanoids. ACM Transactions on Graphics 33, 6 (2014), 218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Y. Lee, D. Terzopoulos, and K. Waters. 1995. Realistic modeling for facial animation. In Computer Graphics Proceedings, Annual Conference Series (Proc. ACM SIGGRAPH 95). Los Angleles, CA, 55--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Lesmana, A. Landgren, P.-E. Forssén, and D.K. Pai. 2014. Active gaze stabilization. In Proc. Indian Conference on Computer Vision, Graphics, and Image Processing. Bangalore, India, Article 81, 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Lesmana and D.K. Pai. 2011. A biologically inspired controller for fast eye movements. In IEEE International Conference on Robotics and Automation (ICRA). IEEE, Shanghai, China, 3670--3675.Google ScholarGoogle Scholar
  24. L. Liu and J. Hodgins. 2017. Learning to schedule control fragments for physics-based characters using deep Q-learning. ACM Transactions on Graphics 36, 3 (2017), 29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Nakada, H. Chen, and D. Terzopoulos. 2018. Deep learning of biomimetic visual perception for virtual humans. In Proc. ACM Symposium on Applied Perception (SAP '18). Vancouver, BC, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Nakada and D. Terzopoulos. 2015. Deep learning of neuromuscular control for biomechanical human animation. In Advances in Visual Computing (Lecture Notes in Computer Science, Vol. 9474). Springer, Berlin, 339--348. Proc. International Symposium on Visual Computing, Las Vegas, NV, December 2015.Google ScholarGoogle Scholar
  27. X.B. Peng, G. Berseth, K. Yin, and M. Van De Panne. 2017. Deeploco: Dynamic locomotion skills using hierarchical deep reinforcement learning. ACM Transactions on Graphics 36, 4 (2017), 41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T.F. Rabie and D. Terzopoulos. 2000. Active perception in virtual humans. In Proc. Vision Interface 2000. Montreal, Canada, 16--22.Google ScholarGoogle Scholar
  29. P. Sachdeva, S. Sueda, S. Bradley, M. Fain, and D.K. Pai. 2015. Biomechanical simulation and control of hands and tendinous systems. ACM Transactions on Graphics 34, 4 (2015), 42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. E.L. Schwartz. 1977. Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biological Cybernetics 25, 4 (1977), 181--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. W. Si, S.-H. Lee, E. Sifakis, and D. Terzopoulos. 2014. Realistic biomechanical simulation and control of human swimming. ACM Transactions on Graphics 34, 1, Article 10 (Nov. 2014), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. E. Sifakis, I. Neverov, and R. Fedkiw. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Transactions on Graphics 1, 212 (2005), 417--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. Sueda, A. Kaufman, and D.K. Pai. 2008. Musculotendon simulation for hand animation. ACM Transactions on Graphics 27, 3 (Aug. 2008), 83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. Terzopoulos and T.F. Rabie. 1995. Animat vision: Active vision with artificial animals. In Proc. Fifth International Conference on Computer Vision (ICCV '95). Cambridge, MA, 840--845. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. D. Terzopoulos and K. Waters. 1990. Physically-based facial modelling, analysis, and animation. Computer Animation and Virtual Worlds 1, 2 (1990), 73--80.Google ScholarGoogle Scholar
  36. J.M. Wang, S.R. Hamner, S.L. Delp, and V. Koltun. 2012. Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Transactions on Graphics 31, 4, Article 25 (2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Q. Wei, S. Sueda, and D.K. Pai. 2010. Biomechanical simulation of human eye movement. In Biomedical Simulation (Lecture Notes in Computer Science), Vol. 5958. Springer-Verlag, Berlin, 108--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S.H. Yeo, M. Lesmana, D.R. Neog, and D.K. Pai. 2012. Eyecatch: Simulating visuomotor coordination for object interception. ACM Transactions on Graphics 31, 4 (2012), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Deep learning of biomimetic sensorimotor control for biomechanical human animation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 37, Issue 4
          August 2018
          1670 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3197517
          Issue’s Table of Contents

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 30 July 2018
          Published in tog Volume 37, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader