skip to main content
research-article

Single-photon 3D imaging with deep sensor fusion

Published:30 July 2018Publication History
Skip Abstract Section

Abstract

Sensors which capture 3D scene information provide useful data for tasks in vehicle navigation, gesture recognition, human pose estimation, and geometric reconstruction. Active illumination time-of-flight sensors in particular have become widely used to estimate a 3D representation of a scene. However, the maximum range, density of acquired spatial samples, and overall acquisition time of these sensors is fundamentally limited by the minimum signal required to estimate depth reliably. In this paper, we propose a data-driven method for photon-efficient 3D imaging which leverages sensor fusion and computational reconstruction to rapidly and robustly estimate a dense depth map from low photon counts. Our sensor fusion approach uses measurements of single photon arrival times from a low-resolution single-photon detector array and an intensity image from a conventional high-resolution camera. Using a multi-scale deep convolutional network, we jointly process the raw measurements from both sensors and output a high-resolution depth map. To demonstrate the efficacy of our approach, we implement a hardware prototype and show results using captured data. At low signal-to-background levels, our depth reconstruction algorithm with sensor fusion outperforms other methods for depth estimation from noisy measurements of photon arrival times.

Skip Supplemental Material Section

Supplemental Material

113-252.mp4
a113-lindell.mp4

References

  1. E. Abreu, M. Lightstone, S.K. Mitra, and K. Arakawa. 1996. A new efficient approach for the removal of impulse noise from highly corrupted images. IEEE Trans. Image Process. 5, 6 (1996), 1012--1025. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Achar, J.R. Bartels, W.L. Whittaker, K.N. Kutulakos, and S.G. Narasimhan. 2017. Epipolar time-of-flight imaging. ACM Trans. Graph. (SIGGRAPH) 36, 4 (2017), 37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Y. Altmann, R. Aspden, M. Padgett, and S. McLaughlin. 2017. A Bayesian Approach to Denoising of Single-Photon Binary Images. IEEE Trans. Computat. Imaging 3, 3 (Sept 2017), 460--471.Google ScholarGoogle Scholar
  4. A. Bleiweiss and M. Werman. 2009. Fusing time-of-flight depth and color for real-time segmentation and tracking. In Dynamic 3D Imaging. 58--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Burri, H. Homulle, C. Bruschini, and E. Charbon. 2016. LinoSPAD: A time-resolved 256X1 CMOS SPAD line sensor system featuring 64 FPGA-based TDC channels running at up to 8.5 giga-events per second. In Proc. SPIE, Vol. 9899. 98990D.Google ScholarGoogle Scholar
  6. D. Chan, H. Buisman, C. Theobalt, and S. Thrun. 2008. A noise-aware filter for real-time depth upsampling. In Workshop on Multi-Camera and Multi-Modal Sensor Fusion Algorithms and Applications.Google ScholarGoogle Scholar
  7. Q. Chen and V. Koltun. 2013. A simple model for intrinsic image decomposition with depth cues. In Proc. ICCV. 241--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H. Dautet, P. Deschamps, B. Dion, A.D. MacGregor, D. MacSween, R.J. McIntyre, C. Trottier, and P.P. Webb. 1993. Photon counting techniques with silicon avalanche photodiodes. Applied optics 32, 21 (1993), 3894--3900.Google ScholarGoogle Scholar
  9. J. Diebel and S. Thrun. 2006. An application of Markov Random Fields to range sensing. In Prac. NIPS. 291--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, and H. Bischof. 2013. Image guided depth upsampling using anisotropic total generalized variation. In Proc. CVPR. 993--1000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. 2012. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. The International Journal of Robotics Research 31, 5 (2012), 647--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. R. Horaud, M. Hansard, G. Evangelidis, and C. Ménier. 2016. An overview of depth cameras and range scanners based on time-of-flight technologies. Machine Vision and Applications 27, 7 (2016), 1005--1020. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T. Hui, C.C. Loy, and X. Tang. 2016. Depth map super-resolution by deep multi-scale guidance. In Proc. ECCV. 353--369.Google ScholarGoogle Scholar
  14. D. Kingma and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  15. A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F.N.C. Wong, J.H. Shapiro, and V.K. Goyal. 2014. First-photon imaging. Science 343, 6166 (2014), 58--61.Google ScholarGoogle Scholar
  16. A. Kolb, E. Barth, R. Koch, and R. Larsen. 2009. Time-of-flight sensors in computer graphics. In Eurographics (STARs). 119--134.Google ScholarGoogle Scholar
  17. J. Kopf, M.F. Cohen, D. Lischinski, and M. Uyttendaele. 2007. Joint bilateral upsampling. In ACM Trans. Graph. (SIGGRAPH), Vol. 26. 96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Koskinen, J.T. Kostamovaara, and R.A. Myllylae. 1992. Comparison of continuous-wave and pulsed time-of-flight laser range-finding techniques. In Proc. SPIE 1614. 296--305.Google ScholarGoogle Scholar
  19. Y. Li, J. Huang, N. Ahuja, and M. Yang. 2016. Deep joint image filtering. In Proc. ECCV. 154--169.Google ScholarGoogle Scholar
  20. G. Lin, A. Milan, C. Shen, and I. Reid. 2017. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In Proc. CVPR.Google ScholarGoogle Scholar
  21. D.B. Lindell, M. O'Toole, and G. Wetzstein. 2018. Towards transient imaging at interactive rates with single-photon detectors. In Proc. ICCP.Google ScholarGoogle Scholar
  22. J. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M.H. Kim, X. Tong, and D. Gutierrez. 2017. DeepToF: Off-the-shelf real-time correction of multipath interference in time-of-flight imaging. ACM Trans. Graph. (SIGGRAPH Asia) 36, 6 (2017), 219:1--219:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. McCarthy, X. Ren, A. Della Frera, N.R. Gemmell, N.J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G.S. Buller. 2013. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector. Optics express 21, 19 (2013), 22098--22113.Google ScholarGoogle Scholar
  24. D. O'Connor and D. Philips. 1984. Time-correlated single photon counting. Academic Press.Google ScholarGoogle Scholar
  25. M. O'Toole, S. Achar, S.G. Narasimhan, and K.N. Kutulakos. 2015. Homogeneous codes for energy-efficient illumination and imaging. ACM Trans. Graph. (SIGGRAPH) 34, 4, Article 35 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. O'Toole, F. Heide, D.B. Lindell, K. Zang, S. Diamond, and G. Wetzstein. 2017. Reconstructing transient images from single-photon sensors. In Proc. CVPR.Google ScholarGoogle Scholar
  27. J. Park, H. Kim, Y. Tai, M.S. Brown, and I. Kweon. 2011. High quality depth map upsampling for 3D-TOF cameras. In Proc. ICCV 1623--1630. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A.M. Pawlikowska, A. Halimi, R.A. Lamb, and G.S. Buller. 2017. Single-photon three-dimensional imaging at up to 10 kilometers range. Optics Express 25, 10 (2017), 11919--11931.Google ScholarGoogle ScholarCross RefCross Ref
  29. C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun. 2017. Large kernel matters- Improve semantic segmentation by global convolutional network. In Proc. CVPR. 1743--1751.Google ScholarGoogle Scholar
  30. G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama. 2004. Digital photography with flash and no-flash image pairs. ACM Trans. Graph. (SIGGRAPH) 23, 3 (2004), 664--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, and T.E. Ferrin. 2004. UCSF Chimera-a visualization system for exploratory research and analysis. Journal of computational chemistry 25, 13 (2004), 1605--1612.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. Rapp and V.K. Goyal. 2017. A few photons among many: Unmixing signal and noise for photon-efficient active imaging. IEEE Trans. Computat. Imaging 3 (2017), 445--459. Issue 3.Google ScholarGoogle ScholarCross RefCross Ref
  33. D. Renker. 2006. Geiger-mode avalanche photodiodes, history, properties and problems. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 567, 1 (2006), 48--56.Google ScholarGoogle ScholarCross RefCross Ref
  34. D. Scharstein and C. Pal. 2007. Learning conditional random fields for stereo. In Proc. CVPR. 1--8.Google ScholarGoogle Scholar
  35. D. Shin, A. Kirmani, V.K. Goyal, and J.H. Shapiro. 2015. Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors. IEEE Trans. Computat. Imaging 1, 2 (2015), 112--125.Google ScholarGoogle ScholarCross RefCross Ref
  36. D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V.K. Goyal, F.N.C. Wong, and J.H. Shapiro. 2016. Photon-efficient imaging with a single-photon camera. Nature Communications 7 (2016).Google ScholarGoogle Scholar
  37. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. 2012. Indoor segmentation and support inference from RGBD images. In Proc. ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. Su, F. Heide, G. Wetzstein, and W. Heidrich. 2018. Deep end-to-end time-of-flight imaging. In Proc. CVPR.Google ScholarGoogle Scholar
  39. R. Tobin, A. Halimi, A. McCarthy, X. Ren, K.J. McEwan, S. McLaughlin, and G.S. Buller, 2017. Long-range depth profiling of camouflaged targets using single-photon detection. Optical Engineering 57 (2017).Google ScholarGoogle Scholar
  40. Q. Yang, R. Yang, J. Davis, and D. Nistér. 2007. Spatial-depth super resolution for range images. In Proc. CVPR. 1--8.Google ScholarGoogle Scholar

Index Terms

  1. Single-photon 3D imaging with deep sensor fusion

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 37, Issue 4
          August 2018
          1670 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3197517
          Issue’s Table of Contents

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 30 July 2018
          Published in tog Volume 37, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader