skip to main content
research-article

Toward wave-based sound synthesis for computer animation

Published:30 July 2018Publication History
Skip Abstract Section

Abstract

We explore an integrated approach to sound generation that supports a wide variety of physics-based simulation models and computer-animated phenomena. Targeting high-quality offline sound synthesis, we seek to resolve animation-driven sound radiation with near-field scattering and diffraction effects. The core of our approach is a sharp-interface finite-difference time-domain (FDTD) wavesolver, with a series of supporting algorithms to handle rapidly deforming and vibrating embedded interfaces arising in physics-based animation sound. Once the solver rasterizes these interfaces, it must evaluate acceleration boundary conditions (BCs) that involve model-and phenomena-specific computations. We introduce acoustic shaders as a mechanism to abstract away these complexities, and describe a variety of implementations for computer animation: near-rigid objects with ringing and acceleration noise, deformable (finite element) models such as thin shells, bubble-based water, and virtual characters. Since time-domain wave synthesis is expensive, we only simulate pressure waves in a small region about each sound source, then estimate a far-field pressure signal. To further improve scalability beyond multi-threading, we propose a fully time-parallel sound synthesis method that is demonstrated on commodity cloud computing resources. In addition to presenting results for multiple animation phenomena (water, rigid, shells, kinematic deformers, etc.) we also propose 3D automatic dialogue replacement (3DADR) for virtual characters so that pre-recorded dialogue can include character movement, and near-field shadowing and scattering sound effects.

Skip Supplemental Material Section

Supplemental Material

109-258.mp4
a109-wang.mp4

References

  1. T. Akenine-Möller. 2002. Fast 3D Triangle-box Overlap Testing. J. Graph. Tools 6, 1 (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Allen and N. Raghuvanshi. 2015. Aerophones in Flatland: Interactive Wave Simulation of Wind Instruments. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2015) 34, 4 (Aug. 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. S. An, D. L. James, and S. Marschner. 2012. Motion-driven Concatenative Synthesis of Cloth Sounds. ACM Transactions on Graphics (SIGGRAPH 2012) (Aug. 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Avid Technology. 2018. Pro Tools. (2018). http://www.avid.com/pro-tools.Google ScholarGoogle Scholar
  5. D. R. Begault. 1994. 3-D Sound for Virtual Reality and Multimedia. Academic Press Professional, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Bilbao. 2009. Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics. John Wiley and Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Bilbao. 2011. Time domain simulation and sound synthesis for the snare drum. J. Acoust. Soc. Am. 131, 1 (2011).Google ScholarGoogle Scholar
  8. Stefan Bilbao. 2013. Modeling of complex geometries and boundary conditions in finite different/finite volume time domain room acoustics simulation. IEEE Transactions on Audio, Speech, and Language Processing 21 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Bilbao and C. J. Webb. 2013. Physical modeling of timpani drums in 3D on GPGPUs. Journal of the Audio Engineering Society 61, 10 (2013), 737--748.Google ScholarGoogle Scholar
  10. N. Bonneel, G. Drettakis, N. Tsingos, I. Viaud-Delmon, and D. James. 2008. Fast Modal Sounds with Scalable Frequency-Domain Synthesis. ACM Transactions on Graphics 27, 3 (Aug. 2008), 24:1--24:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Botteldooren. 1994. Acoustical finite-difference time-domain simulation in a quasi-cartesian grid. Journal of the Acoustical Society of America 95 (1994).Google ScholarGoogle Scholar
  12. D. Botteldooren. 1997. Time-domain simulation of the influence of close barriers on sound propagation to the environment. The Journal of the Acoustical Society of America 101, 3 (1997), 1278--1285.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. N. Chadwick, S. S. An, and D. L. James. 2009. Harmonic Shells: A Practical Nonlinear Sound Model for Near-Rigid Thin Shells. ACM Transactions on Graphics (Aug. 2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. N. Chadwick and D. L. James. 2011. Animating Fire with Sound. ACM Transactions on Graphics 30, 4 (Aug. 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. N. Chadwick, C. Zheng, and D. L. James. 2012a. Faster Acceleration Noise for Multi-body Animations using Precomputed Soundbanks. ACM Eurographics Symposium on Computer Animation (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. N. Chadwick, C. Zheng, and D. L. James. 2012b. Precomputed Acceleration Noise for Improved Rigid-Body Sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012) 31, 4 (Aug. 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Chaigne, C. Touzé, and O. Thomas. 2005. Nonlinear vibrations and chaos in gongs and cymbals. Acoustical science and technology 26, 5 (2005), 403--409.Google ScholarGoogle Scholar
  18. A. Chandak, C. Lauterbach, M. Taylor, Z. Ren, and D. Manocha. 2008. Ad-frustum: Adaptive frustum tracing for interactive sound propagation. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1707--1722. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. G. Cirio, D. Li, E. Grinspun, Mi. A. Otaduy, and C. Zheng. 2016. Crumpling sound synthesis. ACM Transactions on Graphics (TOG) 35, 6 (2016), 181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. R. Clayton and B. Engquist. 1977. Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of America 67, 6 (1977), 1529.Google ScholarGoogle ScholarCross RefCross Ref
  21. M. Cook. 2015. Pixar, 'The Road to Point Reyes' and the long history of landscape in new visual technologies. (2015).Google ScholarGoogle Scholar
  22. P. R. Cook. 2002. Sound Production and Modeling. IEEE Computer Graphics & Applications 22, 4 (July/Aug. 2002), 23--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. L. Cook, L. Carpenter, and E. Catmull. 1987. The Reyes Image Rendering Architecture. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '87). ACM, New York, NY, USA, 95--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Ducceschi and C. Touzé. 2015. Modal approach for nonlinear vibrations of damped impacted plates: Application to sound synthesis of gongs and cymbals. Journal of Sound and Vibration 344 (2015), 313--331.Google ScholarGoogle ScholarCross RefCross Ref
  25. B. Engquist and A. Majda. 1977. Absorbing boundary conditions for numerical simulation of waves. Proceedings of the National Academy of Sciences 74, 5 (1977), 1765--1766.Google ScholarGoogle ScholarCross RefCross Ref
  26. Ronald P Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. 1999. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method). J. Comput. Phys. 152, 2 (1999), 457 -- 492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi, and J. West. 1998. A Beam Tracing Approach to Acoustic Modeling for Interactive Virtual Environments. In Proceedings of SIGGRAPH 98 (Computer Graphics Proceedings, Annual Conference Series). 21--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. A. Funkhouser, P. Min, and I. Carlbom. 1999. Real-Time Acoustic Modeling for Distributed Virtual Environments. In Proceedings of SIGGRAPH 99 (Computer Graphics Proceedings, Annual Conference Series). 365--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. W. W. Gaver. 1993. Synthesizing auditory icons. In Proceedings of the TNTERACT'93 and CHI'93 conference on Human factors in computing systems. ACM, 228--235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Y. I. Gingold, A. Secord, J. Y. Han, E. Grinspun, and D. Zorin. 2004. A Discrete Model for Inelastic Deformation of Thin Shells.Google ScholarGoogle Scholar
  31. G. Guennebaud, B.Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org. (2010).Google ScholarGoogle Scholar
  32. Jon Häggblad and Björn Engquist. 2012. Consistent modeling of boundaries in acoustic finite-difference Time-domain simulations. Journal of the Acoustical Society of America 132 (2012).Google ScholarGoogle Scholar
  33. P. S. Heckbert. 1987. Ray tracing Jell-O brand gelatin. In ACM SIGGRAPH Computer Graphics, Vol. 21. ACM, 73--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Jacobson, D. Panozzo, et al. 2017. libigl: A simple C++ geometry processing library. (2017). http://libigl.github.io/libigl/.Google ScholarGoogle Scholar
  35. D. L. James, J. Barbie, and D. K. Pai. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July 2006), 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. D. L. James and D. K. Pai. 2002. DyRT: Dynamic Response Textures for Real Time Deformation Simulation with Graphics Hardware. ACM Trans. Graph. 21, 3 (July 2002), 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Kleiner, B.-I. Dalenbäck, and P. Svensson. 1993. Auralization-An Overview. J. Audio Engineering Society 41 (1993), 861--861. Issue 11.Google ScholarGoogle Scholar
  38. D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa. 2010. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster. Journal of computational physics 229, 20 (2010), 7692--7714. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. T. R. Langlois, S. S. An, K. K. Jin, and D. L. James. 2014. Eigenmode Compression for Modal Sound Models. ACM Trans. Graph. 33, 4, Article 40 (July 2014), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. T. R Langlois and D. L James. 2014. Inverse-foley animation: Synchronizing rigid-body motions to sound. ACM Transactions on Graphics (TOG) 33, 4 (2014), 41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. T. R. Langlois, C. Zheng, and D. L. James. 2016. Toward Animating Water with Complex Acoustic Bubbles. ACM Trans. Graph. 35, 4, Article 95 (July 2016), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. S. Larsson and V Thomée. 2009. Partial Differential Equations with Numerical Methods. Springer.Google ScholarGoogle Scholar
  43. Q.-H. Liu and J. Tao. 1997. The perfectly matched layer for acoustic waves in absorptive media. The Journal of the Acoustical Society of America 102, 4 (1997), 2072--2082.Google ScholarGoogle ScholarCross RefCross Ref
  44. S. Marburg and B. Nolte. 2008. Computational acoustics of noise propagation in fluids: finite and boundary element methods. Vol. 578. Springer.Google ScholarGoogle Scholar
  45. R. Mehra, N. Raghuvanshi, L. Antani, A. Chandak, S. Curtis, and D. Manocha. 2013. Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Transactions on Graphics (TOG) 32, 2 (2013), 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. R. Mehra, N. Raghuvanshi, L. Savioja, M. C. Lin, and D. Manocha. 2012. An efficient GPU-based time domain solver for the acoustic wave equation. Applied Acoustics 73, 2(2012), 83--94.Google ScholarGoogle ScholarCross RefCross Ref
  47. A. Meshram, R. Mehra, H. Yang, E. Dunn, J.-M. Frahm, and D. Manochak. 2014. P-hrtf: Efficient personalized hrtf computation for high-fidelity spatial sound. Mixed and Augmented Reality (ISMAR), 2014 IEEE International Symposium on (2014).Google ScholarGoogle ScholarCross RefCross Ref
  48. P. Micikevicius. 2009. 3D Finite Difference Computation on GPUs Using CUDA. In Proceedings of 2Nd Workshop on General Purpose Processing on Graphics Processing Units (GPGPU-2). ACM, New York, NY, USA, 79--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. M. Minnaert. 1933. XVI. On musical air-bubbles and the sounds of running water. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 16, 104 (1933), 235--248.Google ScholarGoogle ScholarCross RefCross Ref
  50. R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, and A. Loebbecke. 2008. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227 (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. R. Mittal and G. Iaccarino. 2005. Immersed Boundary Methods. Annual Review of Fluid Mechanics 37 (2005).Google ScholarGoogle Scholar
  52. P. Morse and K. U. Ingard. 1968. Theoretical Acoustics. Princeton University Press, Princeton, New Jersey.Google ScholarGoogle Scholar
  53. W. Moss, H. Yeh, J.-M. Hong, M. C. Lin, and D. Manocha. 2010. Sounding Liquids: Automatic Sound Synthesis from Fluid Simulation. ACM Trans. Graph. 29, 3 (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. J. F. O'Brien, P. R. Cook, and G. Essl. 2001. Synthesizing Sounds From Physically Based Motion. In Proceedings of SIGGRAPH 2001. 529--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. J. F. O'Brien, C. Shen, and C. M. Gatchalian. 2002. Synthesizing sounds from rigid-body simulations. In The ACM SIGGRAPH 2002 Symposium on Computer Animation. ACM Press, 175--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. C. S. Peskin. 1981. The fluid dynamics of heart valves: experimental, theoretical and computational methods. Annual Review of Fluid Mechanics 14 (1981).Google ScholarGoogle Scholar
  57. N. Raghuvanshi, R. Narain, and M. C. Lin. 2009. Efficient and Accurate Sound Propagation Using Adaptive Rectangular Decomposition. IEEE Trans. Vis. Comput. Graph. 15, 5 (2009), 789--801. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. N. Raghuvanshi and J. Snyder. 2014. Parametric wave field coding for precomputed sound propagation. ACM Transactions on Graphics (TOG) 33, 4 (2014), 38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. J. Saarelma, J. Botts, B. Hamilton, and L. Savioja. 2016. Audibility of dispersion error in room acoustic finite-difference time-domain simulation as a function of simulation distance. The Journal of the Acoustical Society of America 139, 4 (2016), 1822--1832.Google ScholarGoogle ScholarCross RefCross Ref
  60. C. Schissler, R. Mehra, and D. Manocha. 2014. High-order diffraction and diffuse reflections for interactive sound propagation in large environments. ACM Transactions on Graphics (TOG) 33, 4 (2014), 39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. C. Schreck, D. Rohmer, D. James, S. Hahmann, and M.-P. Cani. 2016. Real-time sound synthesis for paper material based on geometric analysis. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. E. Schweickart, D. L. James, and S. Marschner. 2017. Animating Elastic Rods with Sound. ACM Transactions on Graphics 36, 4 (July 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. A. A. Shabana. 2012. Theory of Vibration: An Introduction. Springer Science & Business Media.Google ScholarGoogle Scholar
  64. A. A. Shabana. 2013. Dynamics of multibody systems. Cambridge university press.Google ScholarGoogle Scholar
  65. Side Effects. 2018. Houdini Engine. (2018). http://www.sidefx.com.Google ScholarGoogle Scholar
  66. J. O. Smith. 1992. Physical modeling using digital waveguides. Computer music journal 16, 4 (1992), 74--91.Google ScholarGoogle Scholar
  67. A. Taflove and S. C. Hagness. 2005. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House.Google ScholarGoogle Scholar
  68. T. Takala and J. Hahn. 1992. Sound rendering. In Computer Graphics (Proceedings of SIGGRAPH 92). 211--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. J. G. Tolan and J. B. Schneider. 2003. Locally conformal method for acoustic finite-difference time-domain modeling of rigid surfaces. Journal of the Acoustical Society of America 114 (2003).Google ScholarGoogle Scholar
  70. N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, New York, NY, USA, 545--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. K. van den Doel. 2005. Physically Based Models for Liquid Sounds. ACM Trans. Appl. Percept. 2, 4 (Oct. 2005), 534--546. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. K. van den Doel, P. G. Kry, and D. K. Pai. 2001. FoleyAutomatic: Physically-based Sound Effects for Interactive Simulation and Animation. (2001), 537--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. K. van den Doel and D. K. Pai. 1998. The sounds of physical shapes. Presence: Teleoperators and Virtual Environments 7, 4 (1998), 382--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. M. Vorländer. 2008. Auralization. Aachen: Springer (2008).Google ScholarGoogle Scholar
  75. C.J. Webb. 2014. Parallel computation techniques for virtual acoustics and physical modelling synthesis. Ph.D. Dissertation.Google ScholarGoogle Scholar
  76. C. J. Webb and S. Bilbao. 2011. Computing room acoustics with CUDA - 3D FDTD schemes with boundary losses and viscosity. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2011), 317--320.Google ScholarGoogle ScholarCross RefCross Ref
  77. H. Yeh, R. Mehra, Z. Ren, L. Antani, D. Manocha, and M. Lin. 2013. Wave-ray Coupling for Interactive Sound Propagation in Large Complex Scenes. ACM Trans. Graph. 32, 6, Article 165 (Nov. 2013), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. C. Zheng and D. L. James. 2009. Harmonic Fluids. ACM Transactions on Graphics (SIGGRAPH 2009) 28, 3 (Aug. 2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. C. Zheng and D. L. James. 2010. Rigid-Body Fracture Sound with Precomputed Sound-banks. ACM Transactions on Graphics (SIGGRAPH 2010) 29, 3 (July 2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. C. Zheng and D. L. James. 2011. Toward High-Quality Modal Contact Sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2011) 30, 4 (Aug. 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Toward wave-based sound synthesis for computer animation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 37, Issue 4
      August 2018
      1670 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3197517
      Issue’s Table of Contents

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 July 2018
      Published in tog Volume 37, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader