skip to main content
research-article

Polyhedral voronoi diagrams for additive manufacturing

Published:30 July 2018Publication History
Skip Abstract Section

Abstract

A critical advantage of additive manufacturing is its ability to fabricate complex small-scale structures. These microstructures can be understood as a metamaterial: they exist at a much smaller scale than the volume they fill, and are collectively responsible for an average elastic behavior different from that of the base printing material making the fabricated object lighter and/or flexible along specific directions. In addition, the average behavior can be graded spatially by progressively modifying the micro structure geometry.

The definition of a microstructure is a careful trade-off between the geometric requirements of manufacturing and the properties one seeks to obtain within a shape: in our case a wide range of elastic behaviors. Most existing microstructures are designed for stereolithography (SLA) and laser sintering (SLS) processes. The requirements are however different than those of continuous deposition systems such as fused filament fabrication (FFF), for which there is currently a lack of microstructures enabling graded elastic behaviors.

In this work we introduce a novel type of microstructures that strictly enforce all the requirements of FFF-like processes: continuity, self-support and overhang angles. They offer a range of orthotropic elastic responses that can be graded spatially. This allows to fabricate parts usually reserved to the most advanced technologies on widely available inexpensive printers that also benefit from a continuously expanding range of materials.

Skip Supplemental Material Section

Supplemental Material

a129-martinez.mp4

References

  1. Jean-Daniel Boissonnat, Micha Sharir, Boaz Tagansky, and Mariette Yvinec. 1995. Voronoi Diagrams in Higher Dimensions Under Certain Polyhedral Distance Functions. In Proceedings of the Eleventh Annual Symposium on Computational Geometry. 79--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Guylaine Boittin, Daniela Garajeu, Alice Labé, Hervé Moulinec, Fabrice Silva, and Pierre Suquet. 2014. CraFT. http://craft.lma.cnrs-mrs.fr/Google ScholarGoogle Scholar
  3. Guylaine Boittin, Pierre-Guy Vincent, Hervé Moulinec, and Mihai Gărăjeu. 2017. Numerical simulations and modeling of the effective plastic flow surface of a bi-porous material with pressurized intergranular voids. Computer Methods in Applied Mechanics and Engineering 323, Supplement C (2017), 174 -- 201.Google ScholarGoogle ScholarCross RefCross Ref
  4. L. Paul Chew and Robert L. (Scot) Dyrsdale, III. 1985. Voronoi Diagrams Based on Convex Distance Functions. In Proceedings of the First Annual Symposium on Computational Geometry. 235--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A.G. Corbalan, M. Mazon, and T. Recio. 1996. Geometry of bisectors for strictly convex distances. International Journal of Computational Geometry & Applications 06, 01 (1996), 45--58.Google ScholarGoogle ScholarCross RefCross Ref
  6. Lorna J Gibson and Michael F Ashby. 1999. Cellular solids: structure and properties. Cambridge university press.Google ScholarGoogle Scholar
  7. Richard Hill. 1952. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society Section A 65, 5 (1952), 349.Google ScholarGoogle ScholarCross RefCross Ref
  8. Samuel Hornus, Sylvain Lefebvre, Jérémie Dumas, and Frédéric Claux. 2016. Tight Printable Enclosures and Support Structures for Additive Manufacturing. In Proceedings of the Eurographics Workshop on Graphics for Digital Fabrication (GraDiFab '16). 11--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Christian Icking and Lihong Ha. 2001. A Tight Bound for the Complexity of Voronoi Diagrams Under Polyhedral Convex Distance Functions in 3D. In Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing. 316--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Christian Icking, Rolf Klein, Ngoc-Minh Lé, and Lihong Ma. 1995. Convex distance functions in 3-space are different. Fundamenta Informaticae 22, 4 (1995), 331--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Christian Icking, Rolf Klein, Lihong Ma, Stefan Nickel, and Ansgar Weißler. 2001. On bisectors for different distance functions. Discrete Applied Mathematics 109, 1 (2001), 139--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs, Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and Patrick Baudisch. 2016. Metamaterial Mechanisms. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST '16). 529--539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Rolf Klein and Derick Wood. 1988. Voronoi diagrams based on general metrics in the plane. Springer Berlin Heidelberg, 281--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Leary, M. Babaee, M. Brandt, and A. Subic. 2013. Feasible Build Orientations for Self-Supporting Fused Deposition Manufacture: A Novel Approach to Space-Filling Tesselated Geometries. Advanced Materials Research 633 (2013), 148--168.Google ScholarGoogle ScholarCross RefCross Ref
  15. Jusung Lee and Kunwoo Lee. 2017. Block-based inner support structure generation algorithm for 3D printing using fused deposition modeling. The International Journal of Advanced Manufacturing Technology 89, 5 (2017), 2151--2163.Google ScholarGoogle ScholarCross RefCross Ref
  16. Mokwon Lee, Qing Fang, Joonghyun Ryu, Ligang Liu, and Deok-Soo Kim. 2018. Support-Free Hollowing for 3D Printing via Voronoi Diagram of Ellipses. Computer-Aided Design 101 (2018), 23--36. https://arxiv.org/abs/1708.06577Google ScholarGoogle ScholarCross RefCross Ref
  17. Sylvain Lefebvre. 2015. 3D infilling: faster, stronger, simpler, http://sylefeb.blogspot.fr/2015/07/3dprint-3d-infilling-faster-stronger.html.Google ScholarGoogle Scholar
  18. Xingchen Liu and Vadim Shapiro. 2016. Homogenization of material properties in additively manufactured structures. Computer-Aided Design 78, Supplement C (2016), 71--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Marco Livesu, Stefano Ellero, Jonas Martínez, Sylvain Lefebvre, and Marco Attene. 2017. From 3D Models to 3D Prints: An Overview of the Processing Pipeline. Computer Graphics Forum 36 (2017), 537--564. Google ScholarGoogle ScholarCross RefCross Ref
  20. Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-last: Strength to Weight 3D Printed Objects. ACM Trans. Graph. 33, 4, Article 97 (July 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mathias H. Luxner, Juergen Stampfl, and Heinz E. Pettermann. 2007. Numerical simulations of 3D open cell structures - influence of structural irregularities on elasto-plasticity and deformation localization. International Journal of Solids and Structures 44, 9 (2007), 2990 -- 3003.Google ScholarGoogle ScholarCross RefCross Ref
  22. Lihong Ma. 2000. Bisectors and Voronoi diagrams for convex distance functions. Ph.D. Dissertation. Fernuniversität, Fachbereich Informatik.Google ScholarGoogle Scholar
  23. Jonàs Martínez, Jérémie Dumas, and Sylvain Lefebvre. 2016. Procedural Voronoi Foams for Additive Manufacturing. ACM Trans. Graph. 35, 4 (2016), 44:1--44:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jonàs Martínez, Haichuan Song, Jérémie Dumas, and Sylvain Lefebvre. 2017. Orthotropic k-nearest foams for additive manufacturing. ACM Transactions on Graphics 36, 4 (July 2017), 121:1--121:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. Martini and K.J. Swanepoel. 2004. The geometry of Minkowski spaces - A survey. Part II. Expositiones Mathematicae 22, 2 (2004), 93 -- 144.Google ScholarGoogle Scholar
  26. Sara McMains, Jordan Smith, Jianlin Wang, and Carlo Sequin. 2000. Layered Manufacturing of Thin-Walled Parts. In ASME Design Engineering Technical Conference, Baltimore, Maryland. arXiv:http://www.cs.berkeley.edu/ sequin/PAPERS/ASMEdetc00.pdfGoogle ScholarGoogle Scholar
  27. Asla Medeiros e Sá, Vinícius Moreira Mello, Karina Rodriguez Echavarria, and Derek Covill. 2015. Adaptive voids. The Visual Computer 31, 6 (2015), 799--808. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Maher Moakher and Andrew N. Norris. 2006. The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry. Journal of Elasticity 85, 3 (2006), 215--263.Google ScholarGoogle ScholarCross RefCross Ref
  29. H. Moulinec and P. Suquet. 1998. A numerical method for computing the overall response of nonlinear composites with complex micro structure. Computer Methods in Applied Mechanics and Engineering 157, 1 (1998), 69--94.Google ScholarGoogle ScholarCross RefCross Ref
  30. Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. 2009. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-case Stress Relief for Micro structures. ACM Transactions on Graphics 36, 4 (2017), 122:1--122:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic Textures for Additive Fabrication. ACM Trans. Graph. 34, 4 (2015), 135:1--135:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Alexander Pasko, Oleg Fryazinov, Turlif Vilbrandt, Pierre-Alain Fayolle, and Valery Adzhiev. 2011. Procedural function-based modelling of volumetric microstructures. Graphical Models 73, 5 (2011), 165--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A.P. Roberts and E.J. Garboczi. 2002. Elastic properties of model random three-dimensional open-cell solids. J. Mech. Phy. Solids 50, 1 (2002), 33 -- 55.Google ScholarGoogle ScholarCross RefCross Ref
  35. Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to Control Elasticity in 3D Printing. ACM Trans. Graph. 34, 4 (2015), 136:1--136:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ole Sigmund, Niels Aage, and Erik Andreassen. 2016. On the (non-)optimality of Michell structures. Structural and Multidisciplinary Optimization 54, 2 (2016), 361--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. TCT Ting and Tungyang Chen. 2005. Poisson's ratio for anisotropic elastic materials can have no bounds. Quart. J. Mech. Appl. Math. 58, 1 (2005), 73--82.Google ScholarGoogle ScholarCross RefCross Ref
  38. Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik. 2013. OpenFab: A Programmable Pipeline for Multi-material Fabrication. ACM Trans. Graph. 32, 4 (2013), 136:1--136:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. W. Wang, Y. J. Liu, J. Wu, S. Tian, C. C. L. Wang, L. Liu, and X. Liu. 2017. Support-Free Hollowing. IEEE Transactions on Visualization and Computer Graphics (2017).Google ScholarGoogle Scholar
  40. Jun Wu, Charlie C.L. Wang, Xiaoting Zhang, and Rüdiger Westermann. 2016. Self-supporting rhombic infill structures for additive manufacturing. Computer-Aided Design 80 (2016), 32--42.Google ScholarGoogle ScholarCross RefCross Ref
  41. Yue Xie and Xiang Chen. 2017. Support-free interior carving for 3D printing. Visual Informatics 1, 1 (2017), 9--15.Google ScholarGoogle ScholarCross RefCross Ref
  42. Qingnan Zhou. 2015. A study in fabricating microstructures. https://medium.com/3d-printing-stories/a-study-in-fabricating-microstructures-part-1-f267d298326e.Google ScholarGoogle Scholar
  43. Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. 2017. Two-Scale Topology Optimization with Microstructures. ACM Trans. Graph. 36, 5, Article 164 (July 2017), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Polyhedral voronoi diagrams for additive manufacturing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 37, Issue 4
      August 2018
      1670 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3197517
      Issue’s Table of Contents

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 July 2018
      Published in tog Volume 37, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader