Abstract
We present a deep learning-based technique to infer high-quality facial reflectance and geometry given a single unconstrained image of the subject, which may contain partial occlusions and arbitrary illumination conditions. The reconstructed high-resolution textures, which are generated in only a few seconds, include high-resolution skin surface reflectance maps, representing both the diffuse and specular albedo, and medium- and high-frequency displacement maps, thereby allowing us to render compelling digital avatars under novel lighting conditions. To extract this data, we train our deep neural networks with a high-quality skin reflectance and geometry database created with a state-of-the-art multi-view photometric stereo system using polarized gradient illumination. Given the raw facial texture map extracted from the input image, our neural networks synthesize complete reflectance and displacement maps, as well as complete missing regions caused by occlusions. The completed textures exhibit consistent quality throughout the face due to our network architecture, which propagates texture features from the visible region, resulting in high-fidelity details that are consistent with those seen in visible regions. We describe how this highly underconstrained problem is made tractable by dividing the full inference into smaller tasks, which are addressed by dedicated neural networks. We demonstrate the effectiveness of our network design with robust texture completion from images of faces that are largely occluded. With the inferred reflectance and geometry data, we demonstrate the rendering of high-fidelity 3D avatars from a variety of subjects captured under different lighting conditions. In addition, we perform evaluations demonstrating that our method can infer plausible facial reflectance and geometric details comparable to those obtained from high-end capture devices, and outperform alternative approaches that require only a single unconstrained input image.
Supplemental Material
- M. Aittala, T. Aila, and J. Lehtinen. 2016. Reflectance modeling by neural texture synthesis. ACM Trans. Graph. 35, 4 (2016), 65. Google Scholar
Digital Library
- O. Alexander, M. Rogers, W. Lambeth, M. Chiang, and P. Debevec. 2009. The Digital Emily Project: Photoreal Facial Modeling and Animation. In ACM SIGGRAPH 2009 Courses. ACM, New York, NY, USA, Article 12, 12:1--12:15 pages. Google Scholar
Digital Library
- J. T. Barron and J. Malik. 2015a. Shape, illumination, and reflectance from shading. IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 8 (2015), 1670--1687.Google Scholar
Digital Library
- J. T. Barron and J. Malik. 2015b. Shape, Illumination, and Reflectance from Shading. IEEE Transactions on Pattern Analysis and Machine Intelligence (2015).Google Scholar
- T. Beeler, B. Bickel, P. Beardsley, B. Sumner, and M. Gross. 2010. High-quality single-shot capture of facial geometry. In ACM Trans. Graph., Vol. 29. ACM, 40. Google Scholar
Digital Library
- T. Beeler, F. Hahn, D. Bradley, B. Bickel, P. Beardsley, C. Gotsman, R. W. Sumner, and M. Gross. 2011. High-quality passive facial performance capture using anchor frames. In ACM Trans. Graph., Vol. 30. ACM, 75. Google Scholar
Digital Library
- V. Blanz and T. Vetter. 1999. A morphable model for the synthesis of 3D faces. In Proc. SIGGRAPH. 187--194. Google Scholar
Digital Library
- J. Booth, A. Roussos, S. Zafeiriou, A. Ponniah, and D. Dunaway 2016. A 3d morphable model learnt from 10,000 faces. In Proc. CVPR. 5543--5552.Google Scholar
Cross Ref
- D. Bradley, T. Beeler, K. Mitchell, and others. 2017. Real-Time Multi-View Facial Capture with Synthetic Training. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 325--336. Google Scholar
Digital Library
- C. Cao, D. Bradley, K. Zhou, and T. Beeler. 2015. Real-time high-fidelity facial performance capture. ACM Trans. Graph. 34, 4 (2015), 46. Google Scholar
Digital Library
- C. Cao, H. Wu, Y. Weng, T. Shao, and K. Zhou. 2016. Real-time facial animation with image-based dynamic avatars. ACM Trans. Graph. 35, 4 (2016), 126. Google Scholar
Digital Library
- P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, and W. Sarokin. 2000. Acquiring the Reflectance Field of a Human Face. In Proc. SIGGRAPH. Google Scholar
Digital Library
- R. Donner, M. Reiter, G. Langs, P. Peloschek, and H. Bischof. 2006. Fast Active Appearance Model Search Using Canonical Correlation Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 10 (2006), 1690--1694. Google Scholar
Digital Library
- C. N Duong, K. Luu, K. G. Quach, and T. D. Bui. 2015. Beyond principal components: Deep boltzmann machines for face modeling. In Proc. CVPR. 4786--4794.Google Scholar
- G.J. Edwards, C.J. Taylor, and T. F. Cootes. 1998. Interpreting Face Images Using Active Appearance Models. In Proceedings of the 3rd. International Conference on Face and Gesture Recognition (FG '98). IEEE Computer Society, 300--. Google Scholar
Digital Library
- A. A. Efros and W. T. Freeman. 2001. Image Quilting for Texture Synthesis and Transfer. In Proc. SIGGRAPH. ACM, 341--346. Google Scholar
Digital Library
- A. A. Efros and T. K. Leung. 1999. Texture Synthesis by Non-Parametric Sampling. In IEEE ICCV. 1033--. Google Scholar
Digital Library
- G. Fyffe, A. Jones, O. Alexander, R. Ichikari, and P. Debevec. 2014. Driving high-resolution facial scans with video performance capture. ACM Trans. Graph. 34, 1 (2014), 8. Google Scholar
Digital Library
- G. Fyffe, K. Nagano, L. Huynh, S. Saito, J. Busch, A. Jones, H. Li, and P. Debevec. 2017. Multi-View Stereo on Consistent Face Topology. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 295--309. Google Scholar
Digital Library
- P. Garrido, L. Valgaerts, C. Wu, and C. Theobalt. 2013. Reconstructing Detailed Dynamic Face Geometry from Monocular Video. In ACM Trans. Graph., Vol. 32. 158:1--158:10. Google Scholar
Digital Library
- L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shechtman. 2016. Preserving Color in Neural Artistic Style Transfer. CoRR abs/1606.05897 (2016).Google Scholar
- L. A. Gatys, A. S. Ecker, and M. Bethge. 2015. Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. CoRR abs/1505.07376 (2015). Google Scholar
Digital Library
- A. Ghosh, G. Fyffe, B. Tunwattanapong, J. Busch, X. Yu, and P. Debevec. 2011. Multiview Face Capture Using Polarized Spherical Gradient Illumination. ACM Trans. Graph. 30, 6, Article 129 (2011), 129:1--129:10 pages. Google Scholar
Digital Library
- M. Glencross, G.J. Ward, F. Melendez, C.Jay, J. Liu, and R. Hubbold. 2008. A perceptually validated model for surface depth hallucination. ACM Trans. Graph. 27, 3 (2008), 59. Google Scholar
Digital Library
- A. Golovinskiy, W. Matusik, H. Pfister, S. Rusinkiewicz, and T Funkhouser. 2006. A Statistical Model for Synthesis of Detailed Facial Geometry. ACM Trans. Graph. 25, 3 (2006), 1025--1034. Google Scholar
Digital Library
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 2672--2680. Google Scholar
Digital Library
- P. F. Gotardo, T. Simon, Y. Sheikh, and I. Matthews. 2015. Photogeometric scene flow for high-detail dynamic 3d reconstruction. In Proc. ICCV. 846--854. Google Scholar
Digital Library
- P. Graham, B. Tunwattanapong, J. Busch, X. Yu, A. Jones, P. Debevec, and A. Ghosh. 2013a. Measurement-Based Synthesis of Facial Microgeometry. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 335--344. Google Scholar
Digital Library
- P. Graham, B. Tunwattanapong, J. Busch, X. Yu, A. Jones, P. Debevec, and A. Ghosh. 2013b. Measurement-based Synthesis of Facial Microgeometry. In EUROGRAPHICS. Google Scholar
Digital Library
- J. Han, K. Zhou, L.-Y. Wei, M. Gong, H. Bao, X. Zhang, and B. Guo. 2006. Fast example-based surface texture synthesis via discrete optimization. The Visual Computer 22, 9--11 (2006), 918--925. Google Scholar
Digital Library
- A. Haro, B. Guenterz, and I. Essay. 2001. Real-time, Photo-realistic, Physically Based Rendering of Fine Scale Human Skin Structure. In Eurographics Workshop on Rendering, S. J. Gortle and K. Myszkowski (Eds.). Google Scholar
Digital Library
- L. Hu, S. Saito, L. Wei, K. Nagano, J. Seo, J. Fursund, I. Sadeghi, C. Sun, Y.-C. Chen, and H. Li. 2017. Avatar Digitization From a Single Image For Real-Time Rendering. ACM Trans. Graph. 36, 6 (2017). Google Scholar
Digital Library
- A. E. Ichim, S. Bouaziz, and M. Pauly. 2015. Dynamic 3D Avatar Creation from Handheld Video Input. ACM Trans. Graph. 34, 4, Article 45 (2015), 45:1--45:14 pages. Google Scholar
Digital Library
- S. Iizuka, E. Simo-Serra, and H. Ishikawa. 2017. Globally and Locally Consistent Image Completion. ACM Trans. Graph. 36, 4, Article 107 (2017), 107:1--107:14 pages. Google Scholar
Digital Library
- P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. 2016. Image-to-image translation with conditional adversarial networks. arXiv:1611.07004 (2016).Google Scholar
- M. K.Johnson, F. Cole, A. Raj, and E. H. Adelson. 2011. Microgeometry Capture using an Elastomeric Sensor. ACM Trans. Graph 30, 4 (2011), 46:1--46:8. Google Scholar
Digital Library
- T. Karras, T. Aila, S. Laine, and J. Lehtinen. 2017. Progressive Growing of GANs for Improved Quality, Stability, and Variation. CoRR abs/1710.10196 (2017).Google Scholar
- I. Kemelmacher-Shlizerman. 2013. Internet-based Morphable Model. IEEE ICCV (2013). Google Scholar
Digital Library
- I. Kemelmacher-Shlizerman and R. Basri. 2011. 3D face reconstruction from a single image using a single reference face shape. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 2 (2011), 394--405. Google Scholar
Digital Library
- I. Kemelmacher-Shlizerman and S. M. Seitz. 2011. Face reconstruction in the wild. In IEEE ICCV. IEEE, 1746--1753. Google Scholar
Digital Library
- H. Kim, M. Zollhöfer, A. Tewari, J. Thies, C. Richardt, and C. Theobalt. 2018. Inverse-FaceNet: Deep Monocular Inverse Face Rendering. In Proc. CVPR.Google Scholar
- D. P. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980 (2014).Google Scholar
- T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. 2015. Deep Convolutional Inverse Graphics Network. In Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 2539--2547. Google Scholar
Digital Library
- V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. 2005. Texture optimization for example-based synthesis. ACM Trans. Graph. 24, 3 (2005), 795--802. Google Scholar
Digital Library
- V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. 2003. Graphcut Textures: Image and Video Synthesis Using Graph Cuts. In Proc. SIGGRAPH. ACM, 277--286. Google Scholar
Digital Library
- M. S. Langer and S. W. Zucker. 1994. Shape-from-shading on a cloudy day. JOSA A 11, 2 (1994), 467--478.Google Scholar
Cross Ref
- A. Lasram and S. Lefebvre. 2012. Parallel patch-based texture synthesis. In Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-Performance Graphics. Eurographics Association, 115--124. Google Scholar
Digital Library
- C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and others. 2016. Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802 (2016).Google Scholar
- S. Lefebvre and H. Hoppe. 2006. Appearance-space texture synthesis. ACM Trans. Graph. 25, 3 (2006), 541--548. Google Scholar
Digital Library
- C. Li, K. Zhou, and S. Lin. 2014. Intrinsic Face Image Decomposition with Human Face Priors. In Proc. ECCV (5)'14. 218--233.Google Scholar
- H. Li, L. Trutoiu, K. Olszewski, L. Wei, T. Trutna, P.-L. Hsieh, A. Nicholls,, A. Nicholls, and C. Ma. 2015. Facial Performance Sensing Head-Mounted Display. ACM Trans. Graph. 34, 4 (July 2015). Google Scholar
Digital Library
- Y. Li, S. Liu, J. Yang, and M.-H. Yang. 2017. Generative Face Completion. In Proc. CVPR.Google Scholar
Cross Ref
- C. Liu, H.-Y. Shum, and W. T. Freeman. 2007. Face Hallucination: Theory and Practice. Int. J. Comput. Vision 75, 1 (2007), 115--134. Google Scholar
Digital Library
- F. Liu, D. Zeng, J. Li, and Q.-j. Zhao. 2017. On 3D face reconstruction via cascaded regression in shape space. Frontiers of Information Technology & Electronic Engineering 18, 12(2017), 1978--1990.Google Scholar
Cross Ref
- Z. Liu, P. Luo, X. Wang, and X. Tang. 2015. Deep Learning Face Attributes in the Wild. In IEEE ICCV. Google Scholar
Digital Library
- D.S. Ma, J. Correll, and B. Wittenbrink. 2015. The Chicago face database: A free stimulus set of faces and norming data. Behavior Research Methods 47, 4 (2015), 1122--1135.Google Scholar
Cross Ref
- W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec. 2007a. Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination. In Proc. EGSR 2007. Eurographics Association, 183--194. Google Scholar
Digital Library
- W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec. 2007b. Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination. In Eurographics Symposium on Rendering. Google Scholar
Digital Library
- W.-C. Ma, A. Jones, J.-Y. Chiang, T. Hawkins, S. Frederiksen, P. Peers, M. Vukovic, M. Ouhyoung, and P. Debevec. 2008. Facial Performance Synthesis Using Deformation-driven Polynomial Displacement Maps. In Proc. SIGGRAPH. ACM, 121:1--121:10. Google Scholar
Digital Library
- I. Matthews and S. Baker. 2004. Active Appearance Models Revisited. Int. J. Comput. Vision 60, 2 (2004), 135--164. Google Scholar
Digital Library
- S. McDonagh, M. Klaudiny, D. Bradley, T. Beeler, I. Matthews, and K. Mitchell. 2016. Synthetic prior design for real-time face tracking. In 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, 639--648.Google Scholar
- U. Mohammed, S. J. D. Prince, and J. Kautz. 2009. Visio-lization: Generating Novel Facial Images. In ACM Trans. Graph. ACM, Article 57, 57:1--57:8 pages. Google Scholar
Digital Library
- K. Nagano, G. Fyffe, O. Alexander, J. Barbič, H. Li, A. Ghosh, and P. Debevec. 2015. Skin Microstructure Deformation with Displacement Map Convolution. ACM Trans. Graph. 34, 4 (2015). Google Scholar
Digital Library
- C. Nhan Duong, K. Luu, K. Gia Quach, and T. D. Bui. 2015. Beyond principal components: Deep boltzmann machines for face modeling. In Proc. CVPR. 4786--4794.Google Scholar
- K. Olszewski, Z. Li, C. Yang, Y. Zhou, R. Yu, Z. Huang, S. Xiang, S. Saito, P. Kohli, and H. Li. 2017. Realistic Dynamic Facial Textures From a Single Image Using GANs. In IEEE ICCV.Google Scholar
- K. Olszewski, J. J. Lim, S. Saito, and H. Li. 2016. High-Fidelity Facial and Speech Animation for VR HMDs. ACM Trans. Graph. 35, 6 (December 2016). Google Scholar
Digital Library
- D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. 2016. Context encoders: Feature learning by inpainting. In Proc. CVPR. 2536--2544.Google Scholar
- A. Radford, L. Metz, and S. Chintala. 2015. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. CoRR abs/1511.06434 (2015).Google Scholar
- E. Richardson, M. Sela, and R. Kimmel. 2016. 3D face reconstruction by learning from synthetic data. In 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, 460--469.Google Scholar
- E. Richardson, M. Sela, R. Or-El, and R. Kimmel. 2017. Learning detailed face reconstruction from a single image. In Proc. CVPR. IEEE, 5553--5562.Google Scholar
- S. Romdhani and T. Vetter. 2005. Estimating 3D Shape and Texture Using Pixel Intensity, Edges, Specular Highlights, Texture Constraints and a Prior.. In Proc. CVPR. 986--993. Google Scholar
Digital Library
- S. Saito, T. Li, and H. Li. 2016. Real-Time Facial Segmentation and Performance Capture from RGB Input. In Proc. ECCV.Google Scholar
- S. Saito, L. Wei, L. Hu, K. Nagano, and H. Li. 2017. Photorealistic Facial Texture Inference Using Deep Neural Networks. In Proc. CVPR.Google Scholar
- M. Sela, E. Richardson, and R. Kimmel. 2017. Unrestricted facial geometry reconstruction using image-to-image translation. In IEEE ICCV. IEEE, 1585--1594.Google Scholar
- S. Sengupta, A. Kanazawa, C. D. Castillo, and D. Jacobs. 2017. SfSNet: Learning Shape, Reflectance and Illuminance of Faces in the Wild. arXiv.1712.01261 (2017).Google Scholar
- F. Shi, H.-T. Wu, X. Tong, and J. Chai. 2014. Automatic acquisition of high-fidelity facial performances using monocular videos. ACM Trans. Graph. 33, 6 (2014), 222. Google Scholar
Digital Library
- Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shechtman, and D. Samaras. 2017. Neural Face Editing with Intrinsic Image Disentangling. arXiv:1704.04131 (2017).Google Scholar
- Solid Angle. 2016. (2016). http://www.solidangle.com/arnold/.Google Scholar
- S. Suwajanakorn, I. Kemelmacher-Shlizerman, and S. M. Seitz. 2014. Total moving face reconstruction. In Proc. ECCV. Springer, 796--812.Google Scholar
- A. Tewari, M. Zollhöfer, P. Garrido, F. Bernard, H. Kim, P. Pérez, and C. Theobalt. 2017a. Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz. arXiv.1712.02859 (2017).Google Scholar
- A. Tewari, M. Zollhöfer, H. Kim, P. Garrido, F. Bernard, P. Perez, and C. Theobalt. 2017b. Mofa: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In IEEE ICCV, Vol. 2.Google Scholar
- The Digital Human League. 2015. Digital Emily 2.0. (2015). http://gl.ict.usc.edu/Research/DigitalEmily2/.Google Scholar
- J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner. 2016a. Face2Face: Real-time Face Capture and Reenactment of RGB Videos. In Proc. CVPR.Google Scholar
- J. Thies, M. Zollöfer, M. Stamminger, C. Theobalt, and M. Nießner. 2016b. FaceVR: Real-Time Facial Reenactment and Eye Gaze Control in Virtual Reality. arXiv:1610.03151 (2016).Google Scholar
- M. Turk and A. Pentland. 1991. Eigenfaces for Recognition. J. Cognitive Neuroscience 3, 1 (1991), 71--86. Google Scholar
Digital Library
- J. von der Pahlen, J. Jimenez, E. Danvoye, P. Debevec, G. Fyffe, and O. Alexander. 2014. Digital Ira and Beyond: Creating Real-time Photoreal Digital Actors. In ACM SIGGRAPH 2014 Courses. ACM, New York, NY, USA, Article 1, 1:1--1:384 pages. Google Scholar
Digital Library
- L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. 2009. State of the art in example-based texture synthesis. In Eurographics 2009, State of the Art Report, EG-STAR. Eurographics Association, 93--117.Google Scholar
- L.-Y. Wei and M. Levoy. 2000. Fast Texture Synthesis Using Tree-structured Vector Quantization. In Proc. SIGGRAPH. 479--488. Google Scholar
Digital Library
- T. Weyrich, W. Matusik, H. Pfister, B. Bickel, C. Donner, C. Tu, J. McAndless, J. Lee, A. Ngan, H. W. Jensen, and M. Gross. 2006. Analysis of Human Faces using a Measurement-Based Skin Reflectance Model. ACM Trans. Graph. 25, 3 (2006), 1013--1024. Google Scholar
Digital Library
- C. A. Wilson, A. Ghosh, P. Peers, J.-Y. Chiang, J. Busch, and P. Debevec. 2010. Temporal upsampling of performance geometry using photometric alignment. ACM Trans. Graph. 29, 2 (2010), 17. Google Scholar
Digital Library
- C. Wu, D. Bradley, M. Gross, and T. Beeler. 2016. An anatomically-constrained local deformation model for monocular face capture. ACM Trans. Graph. 35, 4 (2016), 115. Google Scholar
Digital Library
- R. A. Yeh*, C. Chen*, T. Y. Lim, S. A. G., M. Hasegawa-Johnson, and M. N. Do. 2017. Semantic Image Inpainting with Deep Generative Models. In Proc. CVPR. * equal contribution.Google Scholar
- H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. 2017. Pyramid Scene Parsing Network. In Proc. CVPR.Google Scholar
- J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman. 2017. Toward Multimodal Image-to-image Translation. In Advances in Neural Information Processing Systems 30.Google Scholar
- X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. 2015. High-fidelity pose and expression normalization for face recognition in the wild. In Proc. CVPR. 787--796.Google Scholar
Index Terms
High-fidelity facial reflectance and geometry inference from an unconstrained image
Recommendations
Acquiring the reflectance field of a human face
SIGGRAPH '00: Proceedings of the 27th annual conference on Computer graphics and interactive techniquesWe present a method to acquire the reflectance field of a human face and use these measurements to render the face under arbitrary changes in lighting and viewpoint. We first acquire images of the face from a small set of viewpoints under a dense ...
An introduction to image-based rendering
Integrated image and graphics technologiesIn this chapter, we review the techniques for image-based rendering. Unlike traditional 3D computer graphics in which 3D geometry of the scene is known, image-based rendering (IBR) techniques render novel views directly from input images. IBR techniques ...
Image-based rendering for scenes with reflections
We present a system for image-based modeling and rendering of real-world scenes containing reflective and glossy surfaces. Previous approaches to image-based rendering assume that the scene can be approximated by 3D proxies that enable view ...





Comments