skip to main content
research-article

High-fidelity facial reflectance and geometry inference from an unconstrained image

Authors Info & Claims
Published:30 July 2018Publication History
Skip Abstract Section

Abstract

We present a deep learning-based technique to infer high-quality facial reflectance and geometry given a single unconstrained image of the subject, which may contain partial occlusions and arbitrary illumination conditions. The reconstructed high-resolution textures, which are generated in only a few seconds, include high-resolution skin surface reflectance maps, representing both the diffuse and specular albedo, and medium- and high-frequency displacement maps, thereby allowing us to render compelling digital avatars under novel lighting conditions. To extract this data, we train our deep neural networks with a high-quality skin reflectance and geometry database created with a state-of-the-art multi-view photometric stereo system using polarized gradient illumination. Given the raw facial texture map extracted from the input image, our neural networks synthesize complete reflectance and displacement maps, as well as complete missing regions caused by occlusions. The completed textures exhibit consistent quality throughout the face due to our network architecture, which propagates texture features from the visible region, resulting in high-fidelity details that are consistent with those seen in visible regions. We describe how this highly underconstrained problem is made tractable by dividing the full inference into smaller tasks, which are addressed by dedicated neural networks. We demonstrate the effectiveness of our network design with robust texture completion from images of faces that are largely occluded. With the inferred reflectance and geometry data, we demonstrate the rendering of high-fidelity 3D avatars from a variety of subjects captured under different lighting conditions. In addition, we perform evaluations demonstrating that our method can infer plausible facial reflectance and geometric details comparable to those obtained from high-end capture devices, and outperform alternative approaches that require only a single unconstrained input image.

Skip Supplemental Material Section

Supplemental Material

162-427.mp4
a162-yamaguchi.mp4

References

  1. M. Aittala, T. Aila, and J. Lehtinen. 2016. Reflectance modeling by neural texture synthesis. ACM Trans. Graph. 35, 4 (2016), 65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. O. Alexander, M. Rogers, W. Lambeth, M. Chiang, and P. Debevec. 2009. The Digital Emily Project: Photoreal Facial Modeling and Animation. In ACM SIGGRAPH 2009 Courses. ACM, New York, NY, USA, Article 12, 12:1--12:15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. T. Barron and J. Malik. 2015a. Shape, illumination, and reflectance from shading. IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 8 (2015), 1670--1687.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. T. Barron and J. Malik. 2015b. Shape, Illumination, and Reflectance from Shading. IEEE Transactions on Pattern Analysis and Machine Intelligence (2015).Google ScholarGoogle Scholar
  5. T. Beeler, B. Bickel, P. Beardsley, B. Sumner, and M. Gross. 2010. High-quality single-shot capture of facial geometry. In ACM Trans. Graph., Vol. 29. ACM, 40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Beeler, F. Hahn, D. Bradley, B. Bickel, P. Beardsley, C. Gotsman, R. W. Sumner, and M. Gross. 2011. High-quality passive facial performance capture using anchor frames. In ACM Trans. Graph., Vol. 30. ACM, 75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. V. Blanz and T. Vetter. 1999. A morphable model for the synthesis of 3D faces. In Proc. SIGGRAPH. 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Booth, A. Roussos, S. Zafeiriou, A. Ponniah, and D. Dunaway 2016. A 3d morphable model learnt from 10,000 faces. In Proc. CVPR. 5543--5552.Google ScholarGoogle ScholarCross RefCross Ref
  9. D. Bradley, T. Beeler, K. Mitchell, and others. 2017. Real-Time Multi-View Facial Capture with Synthetic Training. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 325--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C. Cao, D. Bradley, K. Zhou, and T. Beeler. 2015. Real-time high-fidelity facial performance capture. ACM Trans. Graph. 34, 4 (2015), 46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. Cao, H. Wu, Y. Weng, T. Shao, and K. Zhou. 2016. Real-time facial animation with image-based dynamic avatars. ACM Trans. Graph. 35, 4 (2016), 126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, and W. Sarokin. 2000. Acquiring the Reflectance Field of a Human Face. In Proc. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Donner, M. Reiter, G. Langs, P. Peloschek, and H. Bischof. 2006. Fast Active Appearance Model Search Using Canonical Correlation Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 10 (2006), 1690--1694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C. N Duong, K. Luu, K. G. Quach, and T. D. Bui. 2015. Beyond principal components: Deep boltzmann machines for face modeling. In Proc. CVPR. 4786--4794.Google ScholarGoogle Scholar
  15. G.J. Edwards, C.J. Taylor, and T. F. Cootes. 1998. Interpreting Face Images Using Active Appearance Models. In Proceedings of the 3rd. International Conference on Face and Gesture Recognition (FG '98). IEEE Computer Society, 300--. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. A. Efros and W. T. Freeman. 2001. Image Quilting for Texture Synthesis and Transfer. In Proc. SIGGRAPH. ACM, 341--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. A. Efros and T. K. Leung. 1999. Texture Synthesis by Non-Parametric Sampling. In IEEE ICCV. 1033--. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. Fyffe, A. Jones, O. Alexander, R. Ichikari, and P. Debevec. 2014. Driving high-resolution facial scans with video performance capture. ACM Trans. Graph. 34, 1 (2014), 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. G. Fyffe, K. Nagano, L. Huynh, S. Saito, J. Busch, A. Jones, H. Li, and P. Debevec. 2017. Multi-View Stereo on Consistent Face Topology. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 295--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Garrido, L. Valgaerts, C. Wu, and C. Theobalt. 2013. Reconstructing Detailed Dynamic Face Geometry from Monocular Video. In ACM Trans. Graph., Vol. 32. 158:1--158:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shechtman. 2016. Preserving Color in Neural Artistic Style Transfer. CoRR abs/1606.05897 (2016).Google ScholarGoogle Scholar
  22. L. A. Gatys, A. S. Ecker, and M. Bethge. 2015. Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. CoRR abs/1505.07376 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Ghosh, G. Fyffe, B. Tunwattanapong, J. Busch, X. Yu, and P. Debevec. 2011. Multiview Face Capture Using Polarized Spherical Gradient Illumination. ACM Trans. Graph. 30, 6, Article 129 (2011), 129:1--129:10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Glencross, G.J. Ward, F. Melendez, C.Jay, J. Liu, and R. Hubbold. 2008. A perceptually validated model for surface depth hallucination. ACM Trans. Graph. 27, 3 (2008), 59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Golovinskiy, W. Matusik, H. Pfister, S. Rusinkiewicz, and T Funkhouser. 2006. A Statistical Model for Synthesis of Detailed Facial Geometry. ACM Trans. Graph. 25, 3 (2006), 1025--1034. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 2672--2680. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. F. Gotardo, T. Simon, Y. Sheikh, and I. Matthews. 2015. Photogeometric scene flow for high-detail dynamic 3d reconstruction. In Proc. ICCV. 846--854. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. P. Graham, B. Tunwattanapong, J. Busch, X. Yu, A. Jones, P. Debevec, and A. Ghosh. 2013a. Measurement-Based Synthesis of Facial Microgeometry. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 335--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P. Graham, B. Tunwattanapong, J. Busch, X. Yu, A. Jones, P. Debevec, and A. Ghosh. 2013b. Measurement-based Synthesis of Facial Microgeometry. In EUROGRAPHICS. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Han, K. Zhou, L.-Y. Wei, M. Gong, H. Bao, X. Zhang, and B. Guo. 2006. Fast example-based surface texture synthesis via discrete optimization. The Visual Computer 22, 9--11 (2006), 918--925. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Haro, B. Guenterz, and I. Essay. 2001. Real-time, Photo-realistic, Physically Based Rendering of Fine Scale Human Skin Structure. In Eurographics Workshop on Rendering, S. J. Gortle and K. Myszkowski (Eds.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. Hu, S. Saito, L. Wei, K. Nagano, J. Seo, J. Fursund, I. Sadeghi, C. Sun, Y.-C. Chen, and H. Li. 2017. Avatar Digitization From a Single Image For Real-Time Rendering. ACM Trans. Graph. 36, 6 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. E. Ichim, S. Bouaziz, and M. Pauly. 2015. Dynamic 3D Avatar Creation from Handheld Video Input. ACM Trans. Graph. 34, 4, Article 45 (2015), 45:1--45:14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Iizuka, E. Simo-Serra, and H. Ishikawa. 2017. Globally and Locally Consistent Image Completion. ACM Trans. Graph. 36, 4, Article 107 (2017), 107:1--107:14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. 2016. Image-to-image translation with conditional adversarial networks. arXiv:1611.07004 (2016).Google ScholarGoogle Scholar
  36. M. K.Johnson, F. Cole, A. Raj, and E. H. Adelson. 2011. Microgeometry Capture using an Elastomeric Sensor. ACM Trans. Graph 30, 4 (2011), 46:1--46:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. T. Karras, T. Aila, S. Laine, and J. Lehtinen. 2017. Progressive Growing of GANs for Improved Quality, Stability, and Variation. CoRR abs/1710.10196 (2017).Google ScholarGoogle Scholar
  38. I. Kemelmacher-Shlizerman. 2013. Internet-based Morphable Model. IEEE ICCV (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. I. Kemelmacher-Shlizerman and R. Basri. 2011. 3D face reconstruction from a single image using a single reference face shape. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 2 (2011), 394--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. I. Kemelmacher-Shlizerman and S. M. Seitz. 2011. Face reconstruction in the wild. In IEEE ICCV. IEEE, 1746--1753. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. H. Kim, M. Zollhöfer, A. Tewari, J. Thies, C. Richardt, and C. Theobalt. 2018. Inverse-FaceNet: Deep Monocular Inverse Face Rendering. In Proc. CVPR.Google ScholarGoogle Scholar
  42. D. P. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980 (2014).Google ScholarGoogle Scholar
  43. T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. 2015. Deep Convolutional Inverse Graphics Network. In Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 2539--2547. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. 2005. Texture optimization for example-based synthesis. ACM Trans. Graph. 24, 3 (2005), 795--802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. 2003. Graphcut Textures: Image and Video Synthesis Using Graph Cuts. In Proc. SIGGRAPH. ACM, 277--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. M. S. Langer and S. W. Zucker. 1994. Shape-from-shading on a cloudy day. JOSA A 11, 2 (1994), 467--478.Google ScholarGoogle ScholarCross RefCross Ref
  47. A. Lasram and S. Lefebvre. 2012. Parallel patch-based texture synthesis. In Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-Performance Graphics. Eurographics Association, 115--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and others. 2016. Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802 (2016).Google ScholarGoogle Scholar
  49. S. Lefebvre and H. Hoppe. 2006. Appearance-space texture synthesis. ACM Trans. Graph. 25, 3 (2006), 541--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. C. Li, K. Zhou, and S. Lin. 2014. Intrinsic Face Image Decomposition with Human Face Priors. In Proc. ECCV (5)'14. 218--233.Google ScholarGoogle Scholar
  51. H. Li, L. Trutoiu, K. Olszewski, L. Wei, T. Trutna, P.-L. Hsieh, A. Nicholls,, A. Nicholls, and C. Ma. 2015. Facial Performance Sensing Head-Mounted Display. ACM Trans. Graph. 34, 4 (July 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Y. Li, S. Liu, J. Yang, and M.-H. Yang. 2017. Generative Face Completion. In Proc. CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  53. C. Liu, H.-Y. Shum, and W. T. Freeman. 2007. Face Hallucination: Theory and Practice. Int. J. Comput. Vision 75, 1 (2007), 115--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. F. Liu, D. Zeng, J. Li, and Q.-j. Zhao. 2017. On 3D face reconstruction via cascaded regression in shape space. Frontiers of Information Technology & Electronic Engineering 18, 12(2017), 1978--1990.Google ScholarGoogle ScholarCross RefCross Ref
  55. Z. Liu, P. Luo, X. Wang, and X. Tang. 2015. Deep Learning Face Attributes in the Wild. In IEEE ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. D.S. Ma, J. Correll, and B. Wittenbrink. 2015. The Chicago face database: A free stimulus set of faces and norming data. Behavior Research Methods 47, 4 (2015), 1122--1135.Google ScholarGoogle ScholarCross RefCross Ref
  57. W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec. 2007a. Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination. In Proc. EGSR 2007. Eurographics Association, 183--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec. 2007b. Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination. In Eurographics Symposium on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. W.-C. Ma, A. Jones, J.-Y. Chiang, T. Hawkins, S. Frederiksen, P. Peers, M. Vukovic, M. Ouhyoung, and P. Debevec. 2008. Facial Performance Synthesis Using Deformation-driven Polynomial Displacement Maps. In Proc. SIGGRAPH. ACM, 121:1--121:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. I. Matthews and S. Baker. 2004. Active Appearance Models Revisited. Int. J. Comput. Vision 60, 2 (2004), 135--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. S. McDonagh, M. Klaudiny, D. Bradley, T. Beeler, I. Matthews, and K. Mitchell. 2016. Synthetic prior design for real-time face tracking. In 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, 639--648.Google ScholarGoogle Scholar
  62. U. Mohammed, S. J. D. Prince, and J. Kautz. 2009. Visio-lization: Generating Novel Facial Images. In ACM Trans. Graph. ACM, Article 57, 57:1--57:8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. K. Nagano, G. Fyffe, O. Alexander, J. Barbič, H. Li, A. Ghosh, and P. Debevec. 2015. Skin Microstructure Deformation with Displacement Map Convolution. ACM Trans. Graph. 34, 4 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. C. Nhan Duong, K. Luu, K. Gia Quach, and T. D. Bui. 2015. Beyond principal components: Deep boltzmann machines for face modeling. In Proc. CVPR. 4786--4794.Google ScholarGoogle Scholar
  65. K. Olszewski, Z. Li, C. Yang, Y. Zhou, R. Yu, Z. Huang, S. Xiang, S. Saito, P. Kohli, and H. Li. 2017. Realistic Dynamic Facial Textures From a Single Image Using GANs. In IEEE ICCV.Google ScholarGoogle Scholar
  66. K. Olszewski, J. J. Lim, S. Saito, and H. Li. 2016. High-Fidelity Facial and Speech Animation for VR HMDs. ACM Trans. Graph. 35, 6 (December 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. 2016. Context encoders: Feature learning by inpainting. In Proc. CVPR. 2536--2544.Google ScholarGoogle Scholar
  68. A. Radford, L. Metz, and S. Chintala. 2015. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. CoRR abs/1511.06434 (2015).Google ScholarGoogle Scholar
  69. E. Richardson, M. Sela, and R. Kimmel. 2016. 3D face reconstruction by learning from synthetic data. In 3D Vision (3DV), 2016 Fourth International Conference on. IEEE, 460--469.Google ScholarGoogle Scholar
  70. E. Richardson, M. Sela, R. Or-El, and R. Kimmel. 2017. Learning detailed face reconstruction from a single image. In Proc. CVPR. IEEE, 5553--5562.Google ScholarGoogle Scholar
  71. S. Romdhani and T. Vetter. 2005. Estimating 3D Shape and Texture Using Pixel Intensity, Edges, Specular Highlights, Texture Constraints and a Prior.. In Proc. CVPR. 986--993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. S. Saito, T. Li, and H. Li. 2016. Real-Time Facial Segmentation and Performance Capture from RGB Input. In Proc. ECCV.Google ScholarGoogle Scholar
  73. S. Saito, L. Wei, L. Hu, K. Nagano, and H. Li. 2017. Photorealistic Facial Texture Inference Using Deep Neural Networks. In Proc. CVPR.Google ScholarGoogle Scholar
  74. M. Sela, E. Richardson, and R. Kimmel. 2017. Unrestricted facial geometry reconstruction using image-to-image translation. In IEEE ICCV. IEEE, 1585--1594.Google ScholarGoogle Scholar
  75. S. Sengupta, A. Kanazawa, C. D. Castillo, and D. Jacobs. 2017. SfSNet: Learning Shape, Reflectance and Illuminance of Faces in the Wild. arXiv.1712.01261 (2017).Google ScholarGoogle Scholar
  76. F. Shi, H.-T. Wu, X. Tong, and J. Chai. 2014. Automatic acquisition of high-fidelity facial performances using monocular videos. ACM Trans. Graph. 33, 6 (2014), 222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shechtman, and D. Samaras. 2017. Neural Face Editing with Intrinsic Image Disentangling. arXiv:1704.04131 (2017).Google ScholarGoogle Scholar
  78. Solid Angle. 2016. (2016). http://www.solidangle.com/arnold/.Google ScholarGoogle Scholar
  79. S. Suwajanakorn, I. Kemelmacher-Shlizerman, and S. M. Seitz. 2014. Total moving face reconstruction. In Proc. ECCV. Springer, 796--812.Google ScholarGoogle Scholar
  80. A. Tewari, M. Zollhöfer, P. Garrido, F. Bernard, H. Kim, P. Pérez, and C. Theobalt. 2017a. Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz. arXiv.1712.02859 (2017).Google ScholarGoogle Scholar
  81. A. Tewari, M. Zollhöfer, H. Kim, P. Garrido, F. Bernard, P. Perez, and C. Theobalt. 2017b. Mofa: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In IEEE ICCV, Vol. 2.Google ScholarGoogle Scholar
  82. The Digital Human League. 2015. Digital Emily 2.0. (2015). http://gl.ict.usc.edu/Research/DigitalEmily2/.Google ScholarGoogle Scholar
  83. J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner. 2016a. Face2Face: Real-time Face Capture and Reenactment of RGB Videos. In Proc. CVPR.Google ScholarGoogle Scholar
  84. J. Thies, M. Zollöfer, M. Stamminger, C. Theobalt, and M. Nießner. 2016b. FaceVR: Real-Time Facial Reenactment and Eye Gaze Control in Virtual Reality. arXiv:1610.03151 (2016).Google ScholarGoogle Scholar
  85. M. Turk and A. Pentland. 1991. Eigenfaces for Recognition. J. Cognitive Neuroscience 3, 1 (1991), 71--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. J. von der Pahlen, J. Jimenez, E. Danvoye, P. Debevec, G. Fyffe, and O. Alexander. 2014. Digital Ira and Beyond: Creating Real-time Photoreal Digital Actors. In ACM SIGGRAPH 2014 Courses. ACM, New York, NY, USA, Article 1, 1:1--1:384 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. 2009. State of the art in example-based texture synthesis. In Eurographics 2009, State of the Art Report, EG-STAR. Eurographics Association, 93--117.Google ScholarGoogle Scholar
  88. L.-Y. Wei and M. Levoy. 2000. Fast Texture Synthesis Using Tree-structured Vector Quantization. In Proc. SIGGRAPH. 479--488. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. T. Weyrich, W. Matusik, H. Pfister, B. Bickel, C. Donner, C. Tu, J. McAndless, J. Lee, A. Ngan, H. W. Jensen, and M. Gross. 2006. Analysis of Human Faces using a Measurement-Based Skin Reflectance Model. ACM Trans. Graph. 25, 3 (2006), 1013--1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. C. A. Wilson, A. Ghosh, P. Peers, J.-Y. Chiang, J. Busch, and P. Debevec. 2010. Temporal upsampling of performance geometry using photometric alignment. ACM Trans. Graph. 29, 2 (2010), 17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. C. Wu, D. Bradley, M. Gross, and T. Beeler. 2016. An anatomically-constrained local deformation model for monocular face capture. ACM Trans. Graph. 35, 4 (2016), 115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. R. A. Yeh*, C. Chen*, T. Y. Lim, S. A. G., M. Hasegawa-Johnson, and M. N. Do. 2017. Semantic Image Inpainting with Deep Generative Models. In Proc. CVPR. * equal contribution.Google ScholarGoogle Scholar
  93. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. 2017. Pyramid Scene Parsing Network. In Proc. CVPR.Google ScholarGoogle Scholar
  94. J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman. 2017. Toward Multimodal Image-to-image Translation. In Advances in Neural Information Processing Systems 30.Google ScholarGoogle Scholar
  95. X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. 2015. High-fidelity pose and expression normalization for face recognition in the wild. In Proc. CVPR. 787--796.Google ScholarGoogle Scholar

Index Terms

  1. High-fidelity facial reflectance and geometry inference from an unconstrained image

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 37, Issue 4
      August 2018
      1670 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3197517
      Issue’s Table of Contents

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 July 2018
      Published in tog Volume 37, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader