skip to main content
research-article
Open Access

Reversible Harmonic Maps between Discrete Surfaces

Published:29 March 2019Publication History
Skip Abstract Section

Abstract

Information transfer between triangle meshes is of great importance in computer graphics and geometry processing. To facilitate this process, a smooth and accurate map is typically required between the two meshes. While such maps can sometimes be computed between nearly isometric meshes, the more general case of meshes with diverse geometries remains challenging. We propose a novel approach for direct map computation between triangle meshes without mapping to an intermediate domain, which optimizes for the harmonicity and reversibility of the forward and backward maps. Our method is general both in the information it can receive as input, e.g., point landmarks, a dense map, or a functional map, and in the diversity of the geometries to which it can be applied. We demonstrate that our maps exhibit lower conformal distortion than the state of the art, while succeeding in correctly mapping key features of the input shapes.

References

  1. Noam Aigerman, Shahar Z. Kovalsky, and Yaron Lipman. 2017. Spherical orbifold Tutte embeddings. ACM Transactions on Graphics (TOG) 36, 4 (2017), 90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Noam Aigerman and Yaron Lipman. 2015. Orbifold Tutte embeddings. ACM Transactions on Graphics (TOG) 34 (2015), 190:1--190:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Noam Aigerman and Yaron Lipman. 2016. Hyperbolic orbifold Tutte embeddings. ACM Transactions on Graphics (TOG) 35 (2016), 217:1--217:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Noam Aigerman, Roi Poranne, and Yaron Lipman. 2015. Seamless surface mappings. ACM Transactions on Graphics (TOG) 34, 4 (2015), 72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. 2011. The wave kernel signature: A quantum mechanical approach to shape analysis. In International Conference on Computer Vision Workshops (ICCV Workshops’11). IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  6. Alexander M. Bronstein, Michael M. Bronstein, Benjamin Bustos, Umberto Castellani, Marco Crisani, Bianca Falcidieno, Leonidas J. Guibas, Iasonas Kokkinos, Vittorio Murino, Maks Ovsjanikov, Giuseppe Patane, Michuela Spagnuolo, and Jian Sun. 2010. SHREC 2010: Robust feature detection and description benchmark. Proceedings of 3DOR 2, 5 (2010), 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2006. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Sciences 103, 5 (2006), 1168--1172.Google ScholarGoogle ScholarCross RefCross Ref
  8. Oliver Burghard, Alexander Dieckmann, and Reinhard Klein. 2017. Embedding shapes with Green’s functions for global shape matching. Computers 8 Graphics 68 (2017), 1--10.Google ScholarGoogle Scholar
  9. Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A simple geometric model for elastic deformations. ACM Transactions on Graphics (TOG) 29, 4 (2010), 38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. 2009. A benchmark for 3D mesh segmentation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 28, 3 (Aug. 2009), 73:1--73:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Xiaobai Chen, Abulhair Saparov, Bill Pang, and Thomas Funkhouser. 2012. Schelling points on 3D surface meshes. ACM Transactions on Graphics (TOG) 31, 4 (2012), 29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Trevor F. Cox and Michael A. A. Cox. 2000. Multidimensional Scaling. CRC Press.Google ScholarGoogle Scholar
  13. James Eells and Joseph H. Sampson. 1964. Harmonic mappings of Riemannian manifolds. American Journal of Mathematics 86, 1 (1964), 109--160.Google ScholarGoogle ScholarCross RefCross Ref
  14. Danielle Ezuz and Mirela Ben-Chen. 2017. Deblurring and denoising of maps between shapes. In Computer Graphics Forum, Vol. 36. 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Donald Geman and Chengda Yang. 1995. Nonlinear image recovery with half-quadratic regularization. IEEE Transactions on Image Processing 4, 7 (1995), 932--946. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. 2007. SHREC: Shape Retrieval Contest: Watertight Models Track.Google ScholarGoogle Scholar
  17. Xianfeng Gu, Yalin Wang, Tony F. Chan, Paul M. Thompson, and Shing-Tung Yau. 2004. Genus zero surface conformal mapping and its application to brain surface mapping. Transactions on Medical Imaging 23, 8 (2004), 949--958.Google ScholarGoogle ScholarCross RefCross Ref
  18. Behrend Heeren, Martin Rumpf, Peter Schröder, Max Wardetzky, and Benedikt Wirth. 2014. Exploring the geometry of the space of shells. Computer Graphics Forum 33, 5 (2014), 247--256.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Behrend Heeren, Martin Rumpf, Max Wardetzky, and Benedikt Wirth. 2012. Time-discrete geodesics in the space of shells. Computer Graphics Forum 31 (2012), 1755--1764. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kai Hormann and Günther Greiner. 2000. MIPS: An Efficient Global Parametrization Method. Technical Report. DTIC Document.Google ScholarGoogle Scholar
  21. Ruqi Huang and Maks Ovsjanikov. 2017. Adjoint map representation for shape analysis and matching. In Computer Graphics Forum, Vol. 36. 151--163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hiroyasu Izeki and Shin Nayatani. 2005. Combinatorial harmonic maps and discrete-group actions on Hadamard spaces. Geometriae Dedicata 114, 1 (2005), 147--188.Google ScholarGoogle ScholarCross RefCross Ref
  23. Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D mesh segmentation and labeling. ACM Transactions on Graphics 29, 3 (2010), 102:1--102:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Vladimir G. Kim, Yaron Lipman, and Thomas Funkhouser. 2011. Blended intrinsic maps. ACM Transactions on Graphics (TOG) 30 (2011), 79:1--79:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Artiom Kovnatsky, Michael M. Bronstein, Xavier Bresson, and Pierre Vandergheynst. 2015. Functional correspondence by matrix completion. In Proceedings of Computer Vision and Pattern Recognition (CVPR’15).Google ScholarGoogle ScholarCross RefCross Ref
  26. Artiom Kovnatsky, Michael M. Bronstein, Alexander M. Bronstein, Klaus Glashoff, and Ron Kimmel. 2013. Coupled quasi-harmonic bases. Computer Graphics Forum 32 (2013), 439--448.Google ScholarGoogle ScholarCross RefCross Ref
  27. Zorah Lähner, Matthias Vestner, Amit Boyarski, Or Litany, Ron Slossberg, Tal Remez, Emanuele Rodolà, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel, and Daniel Cremers. 2017. Efficient deformable shape correspondence via kernel matching. In 3D Vision (3DV’17).Google ScholarGoogle Scholar
  28. Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least squares conformal maps for automatic texture atlas generation. In ACM Transactions on Graphics (TOG), Vol. 21. ACM, 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Manish Mandad, David Cohen-Steiner, Leif Kobbelt, Pierre Alliez, and Mathieu Desbrun. 2017. Variance-minimizing transport plans for inter-surface mapping. ACM Transactions on Graphics 36 (2017), 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Haggai Maron, Nadav Dym, Itay Kezurer, Shahar Kovalsky, and Yaron Lipman. 2016. Point registration via efficient convex relaxation. ACM Transactions on Graphics (TOG) 35 (2016), 73:1--73:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Brent C. Munsell, Pahal Dalal, and Song Wang. 2008. Evaluating shape correspondence for statistical shape analysis: A benchmark study. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 11 (2008), 2023--2039. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Seiki Nishikawa. 2000. Variational Problems in Geometry. AMS.Google ScholarGoogle Scholar
  33. Dorian Nogneng and Maks Ovsjanikov. 2017. Informative descriptor preservation via commutativity for shape matching. In Computer Graphics Forum, Vol. 36. 259--267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. 2012. Functional maps: A flexible representation of maps between shapes. ACM Transactions on Graphics (TOG) 31 (2012), 30:1--30:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Daniele Panozzo, Ilya Baran, Olga Diamanti, and Olga Sorkine-Hornung. 2013. Weighted averages on surfaces. ACM Transactions on Graphics (TOG) 32, 4 (2013), 60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1 (1993), 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  37. Emanuele Rodolà, Michael Moeller, and Daniel Cremers. 2015. Point-wise map recovery and refinement from functional correspondence. In Proceedings of Vision, Modeling and Visualization (VMV’15).Google ScholarGoogle Scholar
  38. Y. Sahillioğlu and Yücel Yemez. 2011. Coarse-to-fine combinatorial matching for dense isometric shape correspondence. In Computer Graphics Forum, Vol. 30. 1461--1470.Google ScholarGoogle ScholarCross RefCross Ref
  39. Matan Sela, Yonathan Aflalo, and Ron Kimmel. 2015. Computational caricaturization of surfaces. Computer Vision and Image Understanding 141 (2015), 1--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Rui Shi, Wei Zeng, Zhengyu Su, Jian Jiang, Hanna Damasio, Zhonglin Lu, Yalin Wang, Shing-Tung Yau, and Xianfeng Gu. 2017. Hyperbolic harmonic mapping for surface registration. IEEE Transactions on Pattern Analysis and Machine Intelligence 39, 5 (2017), 965--980. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Alon Shtern and Ron Kimmel. 2014. Iterative closest spectral kernel maps. In 3D Vision (3DV’14). IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Justin Solomon, Gabriel Peyré, Vladimir G. Kim, and Suvrit Sra. 2016. Entropic metric alignment for correspondence problems. ACM Transactions on Graphics (TOG) 35 (2016), 72:1--72:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Computer Graphics Forum, Vol. 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Robert W. Sumner and Jovan Popović. 2004. Deformation transfer for triangle meshes. ACM Transactions on Graphics (TOG) 23 (2004), 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Gary K. L. Tam, Zhi-Quan Cheng, Yu-Kun Lai, Frank C. Langbein, Yonghuai Liu, David Marshall, Ralph R. Martin, Xian-Fang Sun, and Paul L. Rosin. 2013. Registration of 3D point clouds and meshes: A survey from rigid to nonrigid. IEEE Transactions on Visualization and Computer Graphics 19, 7 (2013), 1199--1217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Alex Tsui, Devin Fenton, Phong Vuong, Joel Hass, Patrice Koehl, Nina Amenta, David Coeurjolly, Charles DeCarli, and Owen Carmichael. 2013. Globally optimal cortical surface matching with exact landmark correspondence. In Information Processing in Medical Imaging, Vol. 23. NIH Public Access, 487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Hajime Urakawa. 1993. Calculus of Variations and Harmonic Maps. AMS.Google ScholarGoogle Scholar
  48. Oliver Van Kaick, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. 2011. A survey on shape correspondence. In Computer Graphics Forum, Vol. 30. 1681--1707.Google ScholarGoogle ScholarCross RefCross Ref
  49. Matthias Vestner, Roee Litman, Emanuele Rodolà, Alex Bronstein, and Daniel Cremers. 2017. Product manifold filter: Non-rigid shape correspondence via kernel density estimation in the product space. In Proceedings of Computer Vision and Pattern Recognition (CVPR’17). 3327--3336.Google ScholarGoogle ScholarCross RefCross Ref
  50. Christoph Von-Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt. 2015. Real-time nonlinear shape interpolation. ACM Transactions on Graphics (TOG) 34 (2015), 34:1--34:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Yilun Wang, Junfeng Yang, Wotao Yin, and Yin Zhang. 2008. A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences 1, 3 (2008), 248--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Kai Xu, Vladimir G. Kim, Qixing Huang, Niloy Mitra, and Evangelos Kalogerakis. 2016. Data-driven shape analysis and processing. In SIGGRAPH ASIA 2016 Courses. ACM, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Yangyang Xu and Wotao Yin. 2013. A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM Journal on Imaging Sciences 6, 3 (2013), 1758--1789.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Xiaopeng Zheng, Chengfeng Wen, Na Lei, Ming Ma, and Xianfeng Gu. 2017. Surface registration via foliation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 938--947.Google ScholarGoogle ScholarCross RefCross Ref
  55. Daniel Zoran and Yair Weiss. 2011. From learning models of natural image patches to whole image restoration. In IEEE International Conference on Computer Vision (ICCV’11). IEEE, 479--486. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Reversible Harmonic Maps between Discrete Surfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 2
      April 2019
      112 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3313807
      Issue’s Table of Contents

      Copyright © 2019 Owner/Author

      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 March 2019
      • Accepted: 1 January 2019
      • Revised: 1 October 2018
      • Received: 1 January 2018
      Published in tog Volume 38, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format