skip to main content
research-article

Efficient and Accurate Collision Response for Elastically Deformable Models

Authors Info & Claims
Published:14 March 2019Publication History
Skip Abstract Section

Abstract

Simulating (elastically) deformable models that can collide with each other and with the environment remains a challenging task. The resulting contact problems can be elegantly approached using Lagrange multipliers to represent the unknown magnitude of the response forces. Typical methods construct and solve a Linear Complementarity Problem (LCP) to obtain the response forces. This requires the inverse of the generalized mass matrix, which is generally hard to obtain for deformable-body problems. In this article, we tackle such contact problems by directly solving the Mixed Linear Complementarity Problem (MLCP) and omitting the construction of an LCP matrix. Since a convex quadratic program with linear constraints is equivalent to an MLCP, we propose to use a Conjugate Residual (CR) solver as the backbone of our collision response system. By dynamically updating the set of active constraints, the MLCP with inequality constraints can be solved efficiently. We also propose a simple yet efficient preconditioner that ensures faster convergence. Finally, our approach is faster than existing methods (at the same accuracy), and it allows accurate treatment of friction.

Skip Supplemental Material Section

Supplemental Material

References

  1. Jérémie Allard, François Faure, Hadrien Courtecuisse, Florent Falipou, Christian Duriez, and Paul G. Kry. 2010. Volume contact constraints at arbitrary resolution. ACM Trans. Graph. 29, 4 (2010), 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Mihai Anitescu and Gary D. Hart. 2004. A fixed-point iteration approach for multibody dynamics with contact and small friction. Math. Program. 101, 1 (2004), 3--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. David Baraff. 1989. Analytical methods for dynamic simulation of non-penetrating rigid bodies. In Proc. of the 16th Annual Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH’89). ACM, New York, NY, 223--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David Baraff. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Proc. of the 21st Annual Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH’94). ACM, New York, NY, 23--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. David Baraff. 1996. Linear-time dynamics using Lagrange multipliers. In Proc. of the 23rd Annual Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH’96). ACM, New York, NY, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. David Baraff and Andrew Witkin. 1992. Dynamic simulation of non-penetrating flexible bodies. In Proc. of the 19th Annual Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH’92). ACM, New York, NY, 303--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proc. of the 25th Annual Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH’98). ACM, New York, NY, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jernej Barbič and Doug James. 2007. Time-critical distributed contact for 6-DoF haptic rendering of adaptively sampled reduced deformable models. In Proc. of the 2007 ACM SIGGRAPH/Eurographics Symp. on Computer Animation (SCA’07). 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jan Bender, Kenny Erleben, and Jeff Trinkle. 2014. Interactive simulation of rigid body dynamics in computer graphics. Comput. Graph. Forum 33, 1 (2014), 246--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Florence Bertails-Descoubes, Florent Cadoux, Gilles Daviet, and Vincent Acary. 2011. A nonsmooth Newton solver for capturing exact Coulomb friction in fiber assemblies. ACM Trans. Graph. 30, 1 (2011), 6:1--6:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (2002), 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Erin Catto. 2005. Iterative dynamics with temporal coherence. In Proc. of the 2005 Game Developer Conf.Google ScholarGoogle Scholar
  14. Richard Cottle, Jong-Shi Pang, and Richard E. Stone. 1992. The Linear Complementarity Problem. Academic Press.Google ScholarGoogle Scholar
  15. Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. 2011. A hybrid iterative solver for robustly capturing Coulomb friction in hair dynamics. ACM Trans. Graph. 30, 6 (2011), 139:1--139:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Christian Duriez, Frederic Dubois, Abderrahmane Kheddar, and Claude Andriot. 2006. Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans. Vis. Comput. Graph. 12, 1 (2006), 36--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz. 1983. Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20, 2 (1983), 345--357.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kenny Erleben. 2007. Velocity-based shock propagation for multibody dynamics animation. ACM Trans. Graph. 26, 2 (2007), Article 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kenny Erleben. 2013. Numerical methods for linear complementarity problems in physics-based animation. In ACM SIGGRAPH 2013 Courses (SIGGRAPH’13). ACM, New York, NY, 8:1--8:42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. David C. Fong and Michael Saunders. 2011. CG Versus MINRES: An Empirical Comparison. Technical Report. Stanford University, Stanford, CA.Google ScholarGoogle Scholar
  21. Nico Galoppo, Miguel A. Otaduy, Paul Mecklenburg, Markus Gross, and Ming C. Lin. 2006. Fast simulation of deformable models in contact using dynamic deformation textures. In Proc. of the 2006 ACM SIGGRAPH/Eurographics Symp. on Computer Animation (SCA’06). 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gene H. Golub and Charles F. Van Loan. 1996. Matrix Computations (3rd ed.). Johns Hopkins University Press, Baltimore, MD. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Eran Guendelman, Robert Bridson, and Ronald Fedkiw. 2003. Nonconvex rigid bodies with stacking. ACM Trans. Graph. 22, 3 (2003), 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ken Hayami. 2002. On the behaviour of the conjugate residual method for singular systems. In Proc. of the 5th China-Japan Seminar on Numerical Mathematics. 117--126.Google ScholarGoogle Scholar
  25. T. Heyn, M. Anitescu, A. Tasora, and D. Negrut. 2012. Using Krylov subspace and spectral methods for solving complementarity problems in many-body contact dynamics simulation. Int. J. Numer. Meth. Eng. 95, 7 (2012), 541--561.Google ScholarGoogle ScholarCross RefCross Ref
  26. Geoffrey Irving, Craig Schroeder, and Ronald Fedkiw. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26, 3 (2007), Article 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Computer Animation (SCA’04). 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Judice and F. Pires. 1994. A block principal pivoting algorithm for large-scale strictly monotone linear complementarity problems. Comput. Oper. Res. 21, 5 (1994), 587--596. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered projections for frictional contact in multibody systems. ACM Trans. Graph. 27, 5 (2008), 164:1--164:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. H. W. Kuhn and A. W. Tucker. 1950. Nonlinear programming. In Proc. of the 2nd Berkeley Symp. on Mathematical Statistics and Probability. 481--492.Google ScholarGoogle Scholar
  31. Siwang Li, Zherong Pan, Jin Huang, Hujun Bao, and Xiaogang Jin. 2015. Deformable objects collision handling with fast convergence. Comput. Graph. Forum 34, 7 (2015), 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. Lobo, M. Saraç, M. Verschoor, M. Solazzi, A. Frisoli, and M. A. Otaduy. 2017. Proxy-based haptic rendering for underactuated haptic devices. In Proc. of the 2017 IEEE World Haptics Conf. (WHC’17). 48--53.Google ScholarGoogle Scholar
  33. David G. Luenberger. 1970. The conjugate residual method for constrained minimization problems. SIAM J. Numer. Anal. 7, 3 (1970), 390--398.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. David G. Luenberger. 1973. An approach to nonlinear programming. J. Optimiz. Theory App. 11, 3 (1973), 219--227.Google ScholarGoogle ScholarCross RefCross Ref
  35. H. Mazhar, T. Heyn, D. Negrut, and A. Tasora. 2015. Using Nesterov’s method to accelerate multibody dynamics with friction and contact. ACM Trans. Graph. 34, 3 (2015), 32:1--32:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Eder Miguel and Miguel A. Otaduy. 2011. Efficient simulation of contact between rigid and deformable objects. In ECCOMAS—Multibody Dynamics 2011.Google ScholarGoogle Scholar
  37. Matthew Moore and Jane Wilhelms. 1988. Collision detection and response for computer animation. In Proc. of the 15th Annual Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH’88). ACM, New York, NY, 289--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Matthias Müller and Markus Gross. 2004. Interactive virtual materials. In Proc. of Graphics Interface 2004 (GI’04). 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position based dynamics. J. Vis. Comun. Image Represent. 18, 2 (2007), 109--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Miguel A. Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009. Implicit contact handling for deformable objects. Comput. Graph. Forum 28, 2 (2009), 559--568.Google ScholarGoogle ScholarCross RefCross Ref
  41. C. C. Paige and M. A. Saunders. 1975. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 4 (1975), 617--629.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Mark Pauly, Dinesh K. Pai, and Leonidas J. Guibas. 2004. Quasi-rigid objects in contact. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Computer Animation (SCA’04). 109--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1992. Numerical Recipes: The Art of Scientific Computing (2nd ed.). Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Laks Raghupathi and François Faure. 2006. QP-collide: A new approach to collision treatment. In journées du groupe de travail Animation et Simulation (GTAS) (Annual French Working Group on Animation and Simulation). Institut de Recherche en Informatique de Toulouse, 91--101.Google ScholarGoogle Scholar
  45. Alison Ramage and Andrew J. Wathen. 1994. Iterative solution techniques for the stokes and Navier-Stokes equations. Int. J. Numer. Methods Fluids 19 (1994), 67--83.Google ScholarGoogle ScholarCross RefCross Ref
  46. Stéphane Redon, Abderrahmane Kheddar, and Sabine Coquillart. 2002. Gauss’ least constraints principle and rigid body simulations. In Proc. of the IEEE Int. Conf. on Robotics and Automation. 11--15.Google ScholarGoogle ScholarCross RefCross Ref
  47. Mathieu Renouf and Pierre Alart. 2005. Conjugate gradient type algorithms for frictional multi-contact problems: Applications to granular materials. Comput. Methods Appl. Mech. Eng. 194, 18--20 (2005), 2019--2041.Google ScholarGoogle ScholarCross RefCross Ref
  48. Youcef Saad and Martin H. Schultz. 1986. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 3 (1986), 856--869. Google ScholarGoogle ScholarCross RefCross Ref
  49. Tamar Shinar, Craig Schroeder, and Ronald Fedkiw. 2008. Two-way coupling of rigid and deformable bodies. In Proc. of the 2008 ACM SIGGRAPH/Eurographics Symp. on Computer Animation (SCA’08). 95--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Morten Silcowitz-Hansen, Sarah Maria Niebe Abel, and Kenny Erleben. 2010a. Projected Gauss-Seidel subspace minimization method for interactive rigid body dynamics: Improving animation quality using a projected Gauss--Seidel subspace minimization method. In Proc. of the Int. Conf. on Computer Graphics Theory and Applications (GRAPP’10), Vol. 1. 38--45.Google ScholarGoogle Scholar
  51. Morten Silcowitz-Hansen, Sarah Niebe, and Kenny Erleben. 2010b. A nonsmooth nonlinear conjugate gradient method for interactive contact force problems. Vis. Comput. 26, 6--8 (2010), 893--901. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Funshing Sin, Yufeng Zhu, Yongqiang Li, and Daniel Schroeder. 2011. Invertible isotropic hyperelasticity using SVD gradients. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Computer Animation (Posters).Google ScholarGoogle Scholar
  53. J. Spillmann, M. Becker, and M. Teschner. 2007. Non-iterative computation of contact forces for deformable objects. J. WSCG 14, (2007), 1--3.Google ScholarGoogle Scholar
  54. D. Stewart and J. C. Trinkle. 1996. An implicit time-stepping scheme for rigid body dynamics with coulomb friction. Int. J. Numer. Meth. Eng. 39 (1996), 2673--2691.Google ScholarGoogle ScholarCross RefCross Ref
  55. Alexey Stomakhin, Russell Howes, Craig Schroeder, and Joseph M. Teran. 2012. Energetically consistent invertible elasticity. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Computer Animation (SCA’12). 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Min Tang, Dinesh Manocha, Miguel A. Otaduy, and Ruofeng Tong. 2012. Continuous penalty forces. ACM Trans. Graph. 31, 4 (2012), 107:1--107:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A. Fuhrmann, et al. 2004. Collision detection for deformable objects. Comput. Graph. Forum 24, 1 (2004), 61--81.Google ScholarGoogle ScholarCross RefCross Ref
  58. Richard Tonge, Feodor Benevolenski, and Andrey Voroshilov. 2012. Mass splitting for jitter-free parallel rigid body simulation. ACM Trans. Graph. 31, 4 (2012), 105:1--105:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Mickeal Verschoor and Andrei C. Jalba. 2012. Analysis and performance estimation of the conjugate gradient method on multiple GPUs. Parallel Comput. 38, 10--11 (2012), 552--575. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Pascal Volino and Nadia Magnenat Thalmann. 1994. Efficient self-collision detection on smoothly discretized surface animations using geometrical shape regularity. Comput. Graph. Forum 13, 3 (1994), 155--166.Google ScholarGoogle ScholarCross RefCross Ref
  61. P. Wriggers. 2002. Computational Contact Mechanics. Wiley.Google ScholarGoogle Scholar
  62. H. Xu, Y. Zhao, and J. Barbič. 2014. Implicit multibody penalty-based distributed contact. IEEE Trans. Vis. Comput. Graph. 20, 9 (2014), 1266--1279.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Efficient and Accurate Collision Response for Elastically Deformable Models

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 2
      April 2019
      112 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3313807
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 14 March 2019
      • Accepted: 1 January 2019
      • Revised: 1 October 2018
      • Received: 1 November 2017
      Published in tog Volume 38, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format