article

Iterative Procedures for Nonlinear Integral Equations

First page image

References

  1. 1 NOL, B. The numerical solution of non-linear integral equations. Non-Linear Integral Equations, P. M. Anselone (Ed.), U. of Wisconsin Press, Madison, 1964.Google ScholarGoogle Scholar
  2. 2 ANDERSON, D.G. Numerical experiments in kinetic theory. Doctoral Thesis, Harvard U., Cambridge, Mass., June 1963.Google ScholarGoogle Scholar
  3. 3 ---. Numerical solutions of the Krook kinetic equation. Tech. Rep. No. 15, Engineering Sciences Lab., Harvard U., Feb. 1965. In preparation.Google ScholarGoogle Scholar
  4. 4 -- AND MCOMBER, H.K. Numerical experiments in kinetic theory. Proceedings of he Fourth International Symposium on Rarefied Gas Dynamics, Academic Press, New York, 1965.Google ScholarGoogle Scholar
  5. 5 LAczos, C. Tables of Chebyshev Polynomials. NBS Appl. Math. Series No. 9, Government Printing Off., Washington, D. C., 1952.Google ScholarGoogle Scholar
  6. 6 OSTROWSKI, A. M. Solution of Equations and Systems of Equations. Academic Press, New York, 1960.Google ScholarGoogle Scholar
  7. 7 TRAUB, J. F. Iterative Methods for the Solution of Equations. Prentiee-Hall, Englewood Cliffs, N. J., 1964.Google ScholarGoogle Scholar
  8. 8 VARGt, R.S. Matrix Iterative Analysis. Prentiee-tIall, Englewood Cliffs, N. J., 1962.Google ScholarGoogle Scholar
  9. 9 ALTMAN, M. A generalization of Newton's method. Bull. Acad. Pol. Sci. 3 (1955), 189.Google ScholarGoogle Scholar
  10. 10 WYNN, P. Acceleration techniques for iterated vector and matrix problems. Math. Cornput. 16 (1962), 301.Google ScholarGoogle Scholar
  11. 11 Fox, L., AND GOODWIN, E.T. The numerical solution of non-singular integral equations. Phil. Trans. 245A (1953), 501.Google ScholarGoogle Scholar
  12. 12 WGSEm, J. H. Accelerating convergence of iterative processes. Comm. ACM 1 (June 1958), 9. Google ScholarGoogle Scholar
  13. 13 WOLFE, P. The secant method for simultaneous non-linear equations. Comm. ACM 2 (Dee. 1959), 12. Google ScholarGoogle Scholar
  14. 14 JEEVS, T.A. Secant modification of Newton's method. Comm. ACM i (Aug. 1958), 9. Google ScholarGoogle Scholar
  15. 15 HENRICI, P. Elements of Numerical Analysis. John Wiley & Sons, New York, 1964.Google ScholarGoogle Scholar
  16. 16 WrNN, P. Acceleration techniques in numerical analysis. Information Processing 1962, C. M. Popplewell (Ed.), North ttolland, Amsterdam, (1963).Google ScholarGoogle Scholar
  17. 17 General purpose vector epsilon algorithm ALGOL procedures. Numer. Math. 6 (1964), 22.Google ScholarGoogle Scholar
  18. 18 HOUSEhOLDeR, A. S. Principles of Numerical Analysis. McGraw-Hill, New York, 1953.Google ScholarGoogle Scholar
  19. 19 KHABAZt, I. M. An iterative least-square method for solving large sparse matrices. Comput. J. 6 (1063-64), 202.Google ScholarGoogle Scholar
  20. 20 TORNHEIM, L. Convergence of multipoint iterative methods. J. ACM II (1964), 210. Google ScholarGoogle Scholar

Index Terms

  1. Iterative Procedures for Nonlinear Integral Equations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader
      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!