skip to main content
research-article

EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts

Authors Info & Claims
Published:14 December 2018Publication History
Skip Abstract Section

Abstract

Generating personal handwriting fonts with large amounts of characters is a boring and time-consuming task. For example, the official standard GB18030-2000 for commercial font products consists of 27,533 Chinese characters. Consistently and correctly writing out such huge amounts of characters is usually an impossible mission for ordinary people. To solve this problem, we propose a system, EasyFont, to automatically synthesize personal handwriting for all (e.g., Chinese) characters in the font library by learning style from a small number (as few as 1%) of carefully-selected samples written by an ordinary person. Major technical contributions of our system are twofold. First, we design an effective stroke extraction algorithm that constructs best-suited reference data from a trained font skeleton manifold and then establishes correspondence between target and reference characters via a non-rigid point set registration approach. Second, we develop a set of novel techniques to learn and recover users’ overall handwriting styles and detailed handwriting behaviors. Experiments including Turing tests with 97 participants demonstrate that the proposed system generates high-quality synthesis results, which are indistinguishable from original handwritings. Using our system, for the first time, the practical handwriting font library in a user’s personal style with arbitrarily large numbers of Chinese characters can be generated automatically. It can also be observed from our experiments that recently-popularized deep learning based end-to-end methods are not able to properly handle this task, which implies the necessity of expert knowledge and handcrafted rules for many applications.

Skip Supplemental Material Section

Supplemental Material

a6-lian.mp4

References

  1. M. Arjovsky, S. Chintala, and L. Bottou. 2017. Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017).Google ScholarGoogle Scholar
  2. S. Baluja. 2016. Learning typographic style. CoRR abs/1603.04000 (2016). http://arxiv.org/abs/1603.04000.Google ScholarGoogle Scholar
  3. W. Baxter and N. Govindaraju. 2010. Simple data-driven modeling of brushes. In Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. E. Bernhardsson. 2016. Analyzing 50k fonts using deep neural networks. Retrieved from https://erikbern.com/2016/01/21/analyzing-50k-fonts-using-deep-neural-networks/.Google ScholarGoogle Scholar
  5. N. D. F. Campbell and J. Kautz. 2014. Learning a manifold of fonts. ACM Transactions on Graphics 33, 4 (2014), 91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. X. Chen, Z. Lian, Y. Tang, and J. Xiao. 2017. An automatic stroke extraction method using manifold learning. In Proc. Eurographics 2017 Short Paper.Google ScholarGoogle Scholar
  7. Já. Dolinsky and H. Takagi. 2009. Analysis and modeling of naturalness in handwritten characters. IEEE Transactions on Neural Networks 20, 10 (2009), 1540--1553. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Dong, M. Xu, and Y. Pan. 2008. Statistic model-based simulation on calligraphy creation. Chinese Journal of Computers 31, 7 (2008), 1276--1282 (In Chinese).Google ScholarGoogle ScholarCross RefCross Ref
  9. J. L. Elman. 1990. Finding structure in time. Cognitive Science 14, 2 (1990), 179--211.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Fan. 1990a. Intelligent Chinese character design and an experimental system ICCDS. JCIP 4, 3 (1990), 1--11 (In Chinese).Google ScholarGoogle Scholar
  11. J. Fan. 1990b. A method of computerizing the calligraphical rules basing on CC structure code. JCIP 4, 4 (1990), 43--52 (In Chinese).Google ScholarGoogle Scholar
  12. FontCreator. 2017. High logic. Retrieved from http://www.high-logic.com/.Google ScholarGoogle Scholar
  13. FontLab. 2017. Fontlab. Retrieved from http://www.fontlab.com/.Google ScholarGoogle Scholar
  14. Founder. 2017. Founder group. Retrieved from http://www.foundertype.com/.Google ScholarGoogle Scholar
  15. L. A. Gatys, A. S. Ecker, M. Bethge, S. Hertzmann, and E. Shechtman. 2017. Controlling perceptual factors in neural style transfer. In Proc. CVPR 2017.Google ScholarGoogle Scholar
  16. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative adversarial networks. In Proc. NIPS 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. T. S. F. Haines, M. Aodha, and G. J. Brostow. 2016. My text in your handwriting. ACM Transactions on Graphics (TOG) 35, 3 (2016), 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proc. CVPR 2016. 770--778.Google ScholarGoogle Scholar
  19. G. E. Hinton and R. R. Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science 313, 5786 (2006), 504--507.Google ScholarGoogle Scholar
  20. S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735--1780. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros. 2017. Image-to-image translation with conditional adversarial nets. In Proc. CVPR 2017.Google ScholarGoogle Scholar
  22. B. K. Jang and R. T. Chin. 1990. Analysis of thinning algorithms using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 6 (1990), 541--551. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. Jin and X. Gao. 2004. Study of several handwritten Chinese character directional feature extraction approaches. Application Research of Computers 21, 11 (2004), 38--40.Google ScholarGoogle Scholar
  24. H. Khosravi and E. Kabir. 2010. Farsi font recognition based on Sobel--Roberts features. Pattern Recognition Letters 31, 1 (2010), 75--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25. 1097--1105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. K. Lai, D. Y. Yeung, and M. C. Pong. 1996. A heuristic search approach to Chinese glyph generation using hierarchical character composition. Computer Processing of Oriental Languages 10, 3 (1996), 307--323.Google ScholarGoogle Scholar
  27. B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. 2015. Human-level concept learning through probabilistic program induction. Science 350, 6266 (2015), 1332--1338.Google ScholarGoogle Scholar
  28. N. Lawrence. 2005. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research 6, Nov (2005), 1783--1816. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. W. Li, Y. Song, and C. Zhou. 2014. Computationally evaluating and synthesizing Chinese calligraphy. Neurocomputing 135, 5 (2014), 299--305. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Z. Lian and J. Xiao. 2012. Automatic shape morphing for Chinese characters. In Proc. SIGGRAPH Asia 2012 TB. 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Z. Lian, B. Zhao, and J. Xiao. 2016. Automatic generation of large-scale handwriting fonts via style learning. In Proc. SIGGRAPH Asia 2016 TB. 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Lin, C. Wang, C. Ting, and R. Chang. 2014. Font generation of personal handwritten Chinese characters. In Proc. IGIP 2014.Google ScholarGoogle Scholar
  33. Z. Lin and L. Wan. 2007. Style-preserving English handwriting synthesis. Pattern Recognition 40, 7 (2007), 2097--2109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Long, E. Shelhamer, and T. Darrell. 2015. Fully convolutional networks for semantic segmentation. In Proc. CVPR 2015. 3431--3440.Google ScholarGoogle Scholar
  35. J. Lu, C. Barnes, S. DiVerdi, and A. Finkelstein. 2013. RealBrush: Painting with examples of physical media. In Proc. ACM SIGGRAPH 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Lu, C. Barnes, C. Wan, P. Asente, R. Mech, and A. Finkelstein. 2014. DecoBrush: Drawing structured decorative patterns by example. In Proc. ACM SIGGRAPH 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Lu, F. Yu, A. Finkelstein, and S. DiVerdi. 2012. HelpingHand: Example-based stroke stylization. In Proc. ACM SIGGRAPH 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. Myronenko and X. Song. 2010. Point set registration: Coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 12 (2010), 2262--2275. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. W. Pan, Z. Lian, R. Sun, Y. Tang, and J. Xiao. 2014. FlexiFont: A flexible system to generate personal font libraries. In Proc. DocEng 2014. 17--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. H. Q. Phan, H. Fu, and A. B. Chan. 2015. FlexyFont: Learning transferring rules for flexible typeface synthesis. Computer Graphics Forum 34, 7 (2015), 245--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Learning representations by back-propagating errors. Nature 323, 6088 (1986), 533--536.Google ScholarGoogle ScholarCross RefCross Ref
  42. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. 2015. ImageNet large scale visual recognition challenge. International Journal of Computer Vision 115, 3 (2015), 211--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. D. Silver, A. Huang, and C. J. Maddison. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529, 7587 (2016), 484--489.Google ScholarGoogle Scholar
  44. K. Simonyan and A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014).Google ScholarGoogle Scholar
  45. A. A. Soltani, H. Huang, J. Wu, T. Kulkarni, and J. Tenenbaum. 2017. Synthesizing 3D shapes via modeling multi-view depth maps and silhouettes with deep generative networks. In Proc. CVPR 2017.Google ScholarGoogle Scholar
  46. S. Strassmann. 1986. Hairy brushes. In Proc. ACM SIGGRAPH 1986, Vol. 20. 225--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Z. Sun, L. Jin, Z. Xie, Z. Feng, and S. Zhang. 2016. Convolutional multi-directional recurrent network for offline handwritten text recognition. In 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). 240--245.Google ScholarGoogle Scholar
  48. R. Suveeranont and T. Igarashi. 2010. Example-based automatic font generation. In Proc. Smart Graphics. 127--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Y. Tian. 2016. ReWrite. Retrieved from https://github.com/kaonashi-tyc/Rewrite/.Google ScholarGoogle Scholar
  50. Y. Tian. 2017. ReWrite. Retrieved from https://github.com/kaonashi-tyc/zi2zi/.Google ScholarGoogle Scholar
  51. Y. Wang, H. Wang, C. Pan, and L. Fang. 2008. Style preserving Chinese character synthesis based on hierarchical representation of character. In Proc. ICASSP 2008. 1097--1100.Google ScholarGoogle Scholar
  52. Z. Wang and Y. Pang. 1991. A computer calligraphy system CCCS. Journal of Computer Aided Design and Computer Graphics 3, 1 (1991), 35--40 (In Chinese).Google ScholarGoogle Scholar
  53. S. T. Wong, H. Leung, and H. H. S. Ip. 2008. Model-based analysis of Chinese calligraphy images. Computer Vision and Image Understanding 109, 1 (2008), 69--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. W. Xia and L. Jin. 2009. A Kai style calligraphic beautification method for handwriting chinese character. In Proc. ICDAR 2009. 798--802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. S. Xu, H. Jiang, T. Jin, F. Lau, and Y. Pan. 2008. Automatic facsimile of Chinese calligraphic writings. In Computer Graphics Forum, Vol. 27. 1879--1886.Google ScholarGoogle ScholarCross RefCross Ref
  56. S. Xu, H. Jiang, F. C. M. Lau, and Y. Pan. 2007. An intelligent system for Chinese calligraphy. In Proc. The National Conference on Artificial Intelligence, Vol. 22. 1578. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. S. Xu, T. Jin, H. Jiang, and F. C. M. Lau. 2009. Automatic generation of personal chinese handwriting by capturing the characteristics of personal handwriting. In Proc. IAAI 2009.Google ScholarGoogle Scholar
  58. S. Xu, F. Lau, F. Tang, and Y. Pan. 2003. Advanced design for a realistic virtual brush. In Computer Graphics Forum, Vol. 22. 533--542.Google ScholarGoogle ScholarCross RefCross Ref
  59. S. Xu, F. C. M. Lau, W. K. Cheung, and Y. Pan. 2005. Automatic generation of artistic Chinese calligraphy. IEEE Intelligent Systems 20, 3 (2005), 32--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. T. Yi, Z. Lian, Y. Tang, and J. Xiao. 2014. A data-driven personalized digital ink for Chinese characters. In Proc. MultiMedia Modeling 2014. 254--265. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. K. Yu, J. Wu, and Y. Zhuang. 2009. Style-consistency calligraphy synthesis system in digital library. In Proc. the 9th ACM/IEEE-CS Joint Conference on Digital Libraries. 145--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Z. Zhang, C. Zhang, W. Shen, C. Yao, W. Liu, and X. Bai. 2016. Multi-oriented text detection with fully convolutional networks. In Proc. CVPR 2016. 4159--4167.Google ScholarGoogle Scholar
  63. B. Zhou, W. Wang, and Z. Chen. 2011. Easy generation of personal chinese handwritten fonts. In Proc. ICME 2011. 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. C. L. Zitnick. 2013. Handwriting beautification using token means. In Proc. ACM SIGGRAPH 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 38, Issue 1
        February 2019
        176 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3300145
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 14 December 2018
        • Revised: 1 September 2018
        • Accepted: 1 September 2018
        • Received: 1 June 2017
        Published in tog Volume 38, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format