article

Improved Trailing Digits Estimates Applied to Optimal Computer Arithmetic

First page image

References

  1. 1 BRENT, R On the precision attainable with various floating-point number systems IEEE Trans Comptrs C.22, 6 (June 1973), 601-607.Google ScholarGoogle Scholar
  2. 2 CODY, W J Static and dynamic numerical characteristics of floating-point arithmeuc IEEE Trans Comptrs C-22, 6 (June 1973), 598-601Google ScholarGoogle Scholar
  3. 3 FELDSTEIN, A, AND GOODMAN, R Convergence estimates for the d,strtbutlon of trailing digits J ACM 23, 2 (April 1976), 287-297 Google ScholarGoogle Scholar
  4. 4 FELDSTEIN, A. AND GOODMAN, R A con3ecture on a fimte and an mfimte product. SIAM ReD. 18 (July 1976), 490-491Google ScholarGoogle Scholar
  5. 5 GOODMAN, R, AND FELDSTEIN, A Round-off error In products. Computing 15 (1975), 263-273Google ScholarGoogle Scholar
  6. 6 GOODMAN, R, AND FELDSTEIN, A Effect of guard digits and normalization options on floating-point multiplication. Computing 18 (1977), 93-106Google ScholarGoogle Scholar
  7. 7 KANEKO, T., Atqo LIU, B On local round-off errors m floating point arithmetic. J A CM 20, 3 (July 1973), 391-398 Google ScholarGoogle Scholar
  8. 8 KNOPP, K Theory and Apphcation of infimte Series Hafner Publishing Co, New York, 1947Google ScholarGoogle Scholar
  9. 9 KNUTH, DE The Art of Computer Programming, Vol 2 Semmumerical Algorithms Addison-Wesley, Reading, Mass, 1969 Google ScholarGoogle Scholar
  10. 10 KUKI, H., AND COD'C, W.J. A stausucal study of the accuracy of floating point number systems. Comm. ACM 16, 4 (April 1973), 223-230 Google ScholarGoogle Scholar
  11. 11 LINNAINMAA, S Towards accurate statistical estimation of rounding errors in floating-point computations BIT 15 (1975), 165-173Google ScholarGoogle Scholar
  12. 12 RAINVILLE, E D Spec:al Functions. MacMillan, New York, 1960Google ScholarGoogle Scholar
  13. 13 S, ERnI~NZ, P.H. Floating-Point Computauon Prent,ce-HalL Englewood Chffs, New Jersey, 1974.Google ScholarGoogle Scholar
  14. 14 TsAo, N. On the distributions of significant digits and roundoff errors Comm. ACM 17, 5 (May 1974), 269- 271. Google ScholarGoogle Scholar
  15. 15 WOUK, A.On digit dtstnbution for random variable. J Soc Indust. AppI Math. 9 (196 i), 597-603Google ScholarGoogle Scholar

Index Terms

  1. Improved Trailing Digits Estimates Applied to Optimal Computer Arithmetic

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader
        About Cookies On This Site

        We use cookies to ensure that we give you the best experience on our website.

        Learn more

        Got it!