skip to main content
research-article

An Omnistereoscopic Video Pipeline for Capture and Display of Real-World VR

Published:01 August 2018Publication History
Skip Abstract Section

Abstract

In this article, we describe a complete pipeline for the capture and display of real-world Virtual Reality video content, based on the concept of omnistereoscopic panoramas. We address important practical and theoretical issues that have remained undiscussed in previous works. On the capture side, we show how high-quality omnistereo video can be generated from a sparse set of cameras (16 in our prototype array) instead of the hundreds of input views previously required. Despite the sparse number of input views, our approach allows for high quality, real-time virtual head motion, thereby providing an important additional cue for immersive depth perception compared to static stereoscopic video. We also provide an in-depth analysis of the required camera array geometry in order to meet specific stereoscopic output constraints, which is fundamental for achieving a plausible and fully controlled VR viewing experience. Finally, we describe additional insights on how to integrate omnistereo video panoramas with rendered CG content. We provide qualitative comparisons to alternative solutions, including depth-based view synthesis and the Facebook Surround 360 system. In summary, this article provides a first complete guide and analysis for reimplementing a system for capturing and displaying real-world VR, which we demonstrate on several real-world examples captured with our prototype.

References

  1. Aseem Agarwala, Maneesh Agrawala, Michael Cohen, David Salesin, and Richard Szeliski. 2006. Photographing long scenes with multi-viewpoint panoramas. TOG (SIGGRAPH) 25, 3 (2006), 853--861. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Robert Anderson, David Gallup, Jonathan T. Barron, Janne Kontkanen, Noah Snavely, Carlos Hernandez Esteban, Sameer Agarwal, and Steven M. Seitz. 2016. Jump: Virtual reality video. TOG (SIGGRAPH Asia) 35, 6 (2016), 198:1--198:13. http://dl.acm.org/citation.cfm?id=2980257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Clemens Birklbauer and Oliver Bimber. 2014. Panorama light-field imaging. CGF (Eurographics) 33, 2 (2014), 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Matthew Brown and David G. Lowe. 2007. Automatic panoramic image stitching using invariant features. IJCV 74, 1 (2007), 59--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. 2004. High accuracy optical flow estimation based on a theory for warping. In ECCV. 25--36.Google ScholarGoogle Scholar
  6. Vincent Chapdelaine-Couture and Sébastien Roy. 2013. The omnipolar camera: A new approach to stereo immersive capture. In ICCP. 1--9.Google ScholarGoogle Scholar
  7. Vincent Couture, Michael S. Langer, and Sébastien Roy. 2011. Panoramic stereo video textures. In ICCV. 1251--1258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Alexei A. Efros and William T. Freeman. 2001. Image quilting for texture synthesis and transfer. In SIGGRAPH. 341--346. http://portal.acm.org/citation.cfm?id=383259.383296 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Simon Fuhrmann, Fabian Langguth, and Michael Goesele. 2014. MVE -- A multi-view reconstruction environment. In Eurographics Workshop on Graphics and Cultural Heritage. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Yasutaka Furukawa and Jean Ponce. 2010. Accurate, dense, and robust multiview stereopsis. TPAMI 32, 8 (2010), 1362--1376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Silvano Galliani, Katrin Lasinger, and Konrad Schindler. 2015. Massively parallel multiview stereopsis by surface normal diffusion. In ICCV. 873--881. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Rajiv Gupta and Richard I. Hartley. 1997. Linear pushbroom cameras. TPAMI 19, 9 (1997), 963--975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Richard Hartley and Andrew Zisserman. 2004. Multiple View Geometry in Computer Vision. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Peter Hedman, Suhib Alsisan, Richard Szeliski, and Johannes Kopf. 2017. Casual 3D photography. TOG (SIGGRAPH Asia) 36, 6 (2017), 234:1--234:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Heiko Hirschmüller. 2008. Stereo processing by semiglobal matching and mutual information. TPAMI 30, 2 (2008), 328--341. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hiroshi Ishiguro, Masashi Yamamoto, and Saburo Tsuji. 1992. Omni-directional stereo. TPAMI 14, 2 (1992), 257--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jiaya Jia and Chi-Keung Tang. 2008. Image stitching using structure deformation. TPAMI 30, 4 (2008), 617--631. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Sing Bing Kang, Richard Szeliski, and Matthew Uyttendaele. 2004. Seamless Stitching using Multi-Perspective Plane Sweep. Technical Report MSR-TR-2004-48. Microsoft Research.Google ScholarGoogle Scholar
  19. Johannes Kopf, Billy Chen, Richard Szeliski, and Michael Cohen. 2010. Street slide: Browsing street level imagery. TOG (SIGGRAPH) 29, 4 (2010), 96:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Johannes Kopf, Matthew Uyttendaele, Oliver Deussen, and Michael F. Cohen. 2007. Capturing and viewing gigapixel images. TOG (SIGGRAPH) 26, 3 (2007), 93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jungjin Lee, Bumki Kim, Kyehyun Kim, Younghui Kim, and Jun-yong Noh. 2016. Rich360: Optimized spherical representation from structured panoramic camera arrays. TOG (SIGGRAPH) 35, 4 (2016), 63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kevin Matzen, Michael F. Cohen, Bryce Evans, Johannes Kopf, and Richard Szeliski. 2017. Low-cost 360 stereo photography and video capture. ACM Trans. Graph. 36, 4, Article 148 (2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Shmuel Peleg and Moshe Ben-Ezra. 1999. Stereo panorama with a single camera. In CVPR. 1395--1401.Google ScholarGoogle Scholar
  24. Shmuel Peleg, Moshe Ben-Ezra, and Yael Pritch. 2001. Omnistereo: Panoramic stereo imaging. TPAMI 23, 3 (2001), 279--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Federico Perazzi, Alexander Sorkine-Hornung, Henning Zimmer, Peter Kaufmann, Oliver Wang, S. Watson, and Markus H. Gross. 2015. Panoramic video from unstructured camera arrays. CGF (Eurographics) 34, 2 (2015), 57--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Alex Rav-Acha, Giora Engel, and Shmuel Peleg. 2008. Minimal aspect distortion (MAD) mosaicing of long scenes. IJCV 78, 2--3 (2008), 187--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Christian Richardt, Yael Pritch, Henning Zimmer, and Alexander Sorkine-Hornung. 2013. Megastereo: Constructing high-resolution stereo panoramas. In CVPR. 1256--1263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Augusto Román and Hendrik P. A. Lensch. 2006. Automatic multiperspective images. In Eurographics Symposium on Rendering Techniques (EGSR). 83--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Steven M. Seitz and Jiwon Kim. 2002. The space of all stereo images. IJCV 48, 1 (2002), 21--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Heung-Yeung Shum and Li-wei He. 1999. Rendering with concentric mosaics. In SIGGRAPH. 299--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Harry Shum and Sing Bing Kang. 2000. Review of image-based rendering techniques. In Visual Communications and Image Processing. 2--13.Google ScholarGoogle Scholar
  32. Heung-Yeung Shum, King To Ng, and Shing-Chow Chan. 2005. A virtual reality system using the concentric mosaic: Construction, rendering, and data compression. IEEE Transactions on Multimedia 7, 1 (2005), 85--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Heung-Yeung Shum and Richard Szeliski. 2000. Systems and experiment paper: Construction of panoramic image mosaics with global and local alignment. IJCV 36, 2 (2000), 101--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Andreas Simon, Randall C. Smith, and Richard R. Pawlicki. 2004. Omnistereo for panoramic virtual environment display systems. In IEEE VR. 67--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Richard Szeliski. 2006. Image alignment and stitching: A tutorial. Foundations and Trends in Computer Graphics and Vision 2, 1 (2006), 1--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Fan Zhang and Feng Liu. 2014. Parallax-tolerant image stitching. In CVPR. 3262--3269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Fan Zhang and Feng Liu. 2015. Casual stereoscopic panorama stitching. In CVPR. 2002--2010.Google ScholarGoogle Scholar
  38. Guofeng Zhang, Jiaya Jia, Tien-Tsin Wong, and Hujun Bao. 2009. Consistent depth maps recovery from a video sequence. TPAMI 31, 6 (2009), 974--988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhengyou Zhang. 2000. A flexible new technique for camera calibration. TPAMI 22, 11 (2000), 1330--1334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Enliang Zheng, Rahul Raguram, Pierre Fite Georgel, and Jan-Michael Frahm. 2011. Efficient generation of multi-perspective panoramas. In International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT). 86--92. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. An Omnistereoscopic Video Pipeline for Capture and Display of Real-World VR

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 37, Issue 3
      Special Issue On Production Rendering and Regular Papers
      June 2018
      198 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3243123
      Issue’s Table of Contents

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 August 2018
      • Revised: 1 February 2018
      • Accepted: 1 February 2018
      • Received: 1 October 2016
      Published in tog Volume 37, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format