skip to main content
10.1145/3230744.3230810acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
poster

Make your own retinal projector: retinal near-eye displays via metamaterials

Authors Info & Claims
Published:12 August 2018Publication History

ABSTRACT

Retinal projection is required for xR applications that can deliver immersive visual experience throughout the day. If general-purpose retinal projection methods can be realized at a low cost, not only could the image be displayed on the retina using less energy, but there is also a possibility of cutting off the weight of projection unit itself from the AR goggles. Several retinal projection methods have been previously proposed. Maxwellian optics based retinal projection was proposed in 1990s [Kollin 1993]. Laser scanning [Liao and Tsai 2009], laser projection using spatial light modulator (SLM) or holographic optical elements were also explored [Jang et al. 2017]. In the commercial field, QD Laser1 with a viewing angle of 26 degrees is available. However, as the lenses and iris of an eyeball are in front of the retina, which is a limitation of a human eyeball, the proposal of retinal projection is generally fraught with narrow viewing angles and small eyebox problems. Due to these problems, retinal projection displays are still a rare commodity because of their difficulty in optical schematics design.

Skip Supplemental Material Section

Supplemental Material

48-288.mp4

References

  1. Changwon Jang, Kiseung Bang, Seokil Moon, Jonghyun Kim, Seungjae Lee, and Byoungho Lee. 2017. Retinal 3D: Augmented Reality Near-eye Display via Pupil-tracked Light Field Projection on Retina. ACM Trans. Graph. 36, 6, Article 190 (Nov. 2017), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Joel Kollin. 1993. A retinal display for virtual-environment applications. In Proceedings of SID International Symposium, Digest of Technical Papers, 1993.Google ScholarGoogle Scholar
  3. Chun-da Liao and Jui-che Tsai. 2009. The Evolution of MEMS Displays. IEEE Transactions on Industrial Electronics 56, 4 (April 2009), 1057--1065.Google ScholarGoogle Scholar
  4. Yoichi Ochiai. 2018. How could we ignore the lens and pupils of eyeballs: Metamaterial optics for retinal projection. CoRR abs/1804.01253 (2018). arXiv:1804.01253 http://arxiv.org/abs/1804.01253Google ScholarGoogle Scholar
  5. Kazuki Otao, Yuta Itoh, Kazuki Takazawa, Hiroyuki Osone, and Yoichi Ochiai. 2018. Air Mounted Eyepiece: Optical See-Through HMD Design with Aerial Optical Functions. In Proceedings of the 9th Augmented Human International Conference (AH '18). ACM, New York, NY, USA, Article 1, 7 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Yamane, S. Maekawa, Y. Utsumi, I. Okada, and A. Yamaguchi. 2015. Fabrication and evaluation of Dihedral Corner Reflector Array for floating image manufactured by synchrotron radiation. In 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC). 436--439.Google ScholarGoogle Scholar

Index Terms

  1. Make your own retinal projector: retinal near-eye displays via metamaterials

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGGRAPH '18: ACM SIGGRAPH 2018 Posters
      August 2018
      148 pages
      ISBN:9781450358170
      DOI:10.1145/3230744

      Copyright © 2018 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 August 2018

      Check for updates

      Qualifiers

      • poster

      Acceptance Rates

      Overall Acceptance Rate1,822of8,601submissions,21%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader