10.1145/3236461.3241967acmotherconferencesArticle/Chapter ViewAbstractPublication PagessccConference Proceedingsconference-collections
research-article

Identifying Critical Issues in Smart City Big Data Project Implementation

Authors Info & Claims
Published:20 June 2018Publication History

ABSTRACT

Many cities across the globe are adopting smart city initiatives, as smart city holds the promise of better quality of life and equity for city's residents, more efficient use of city's infrastructure, and more effective city planning. Big data analytics is the backbone of smart city and the drive engine to achieve smart city's promises. However, statistics indicate that more than 50% of big data projects fail; they either never finish or do not offer the expected value. Resulting in severe consequences as such projects tends to be expensive and require allocating the organization's best resources while doing the project. This is even more crucial in the case of smart city, as cities usually have limited budget and resources.

This paper conducted literature review and perspectives analysis to identify challenges, which can cause big data projects to fail, with focus on smart city related big data projects. The goal is to offer a list of challenges, that a project manager can consider as an initial list of risks for the upcoming project, and evaluate the city's readiness against each of them.

References

  1. Alexandru Adrian. 2013. Big Data Challenges. Database Syst. J. IV, 3 (2013).Google ScholarGoogle Scholar
  2. Eiman Al Nuaimi, Hind Al Neyadi, Nader Mohamed, and Jameela Al-Jaroodi. 2015. Applications of big data to smart cities. J. Internet Serv. Appl. 6, 1 (August 2015).Google ScholarGoogle ScholarCross RefCross Ref
  3. Mark Andrejevic. 2014. Big Data, Big Questions| The Big Data Divide. Int. J. Commun. 8, 0 (June 2014), 17.Google ScholarGoogle Scholar
  4. David Angrave, Andy Charlwood, Ian Kirkpatrick, Mark Lawrence, and Mark Stuart. 2016. HR and analytics: why HR is set to fail the big data challenge: Why HR is set to fail the big data challenge. Hum. Resour. Manag. J. 26, 1 (January 2016), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  5. Husam Barham. 2017. Achieving Competitive Advantage Through Big Data: A Literature Review. 1--7.Google ScholarGoogle Scholar
  6. Randy Bartlett. 2013. A practitioner's guide to business analytics: using data analysis tools to improve your organization's decision making and strategy. McGraw-Hill, New York.Google ScholarGoogle Scholar
  7. M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani, M. Wachowicz, G. Ouzounis, and Y. Portugali. 2012. Smart cities of the future. Eur. Phys. J. Spec. Top. 214, 1 (November 2012), 481--518.Google ScholarGoogle ScholarCross RefCross Ref
  8. Michael Batty. 2013. Big data, smart cities and city planning. Dialogues Hum. Geogr. 3, 3 (November 2013), 274--279.Google ScholarGoogle Scholar
  9. Randy Bean. 2016. Just Using Big Data Isn't Enough Anymore. Harv. Bus. Rev. (February 2016). Retrieved April 21, 2016 from https://hbr.org/2016/02/just-using-big-data-isnt-enough-anymoreGoogle ScholarGoogle Scholar
  10. Daniel Belanche, Luis V. Casaló, and Carlos Orús. 2016. City attachment and use of urban services: Benefits for smart cities. Cities 50, (February 2016), 75--81.Google ScholarGoogle ScholarCross RefCross Ref
  11. Jules J. Berman. 2013. Principles of big data: preparing, sharing, and analyzing complex information. Elsevier, Morgan Kaufmann, Amsterdam. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Elisa Bertino and Elena Ferrari. 2018. Big Data Security and Privacy. In A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years, Sergio Flesca, Sergio Greco, Elio Masciari and Domenico Saccà (eds.). Springer International Publishing, Cham, 425--439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Robert Bock, Marco Iansiti, and Karim R. Lakhani. 2017. What the Companies on the Right Side of the Digital Business Divide Have in Common. Harvard Business Review.Google ScholarGoogle Scholar
  14. Danah Boyd and Kate Crawford. 2012. CRITICAL QUESTIONS FOR BIG DATA: Provocations for a cultural, technological, and scholarly phenomenon. Inf. Commun. Soc. 15, 5 (June 2012), 662--679.Google ScholarGoogle ScholarCross RefCross Ref
  15. B Brown, D Court, and P Willmott. 2013. Mobilizing your C-suite for big-data analytics. McKinsey Q. 4, (2013), 76--87.Google ScholarGoogle Scholar
  16. Jonathan Buckley. 2015. Why the Majority of Big Data Projects Fail. Qubole. Retrieved March 19, 2017 from https://www.qubole.com/blog/big-data/big-data-projects-fail/Google ScholarGoogle Scholar
  17. Ana Luiza de Araújo Burcharth, Mette Praest Knudsen, and Helle Alsted Søndergaard. 2014. Neither invented nor shared here: The impact and management of attitudes for the adoption of open innovation practices. Technovation 34, 3 (March 2014), 149--161.Google ScholarGoogle Scholar
  18. Roger Burrows and Mike Savage. 2014. After the crisis? Big Data and the methodological challenges of empirical sociology. Big Data Soc. 1, 1 (July 2014), 205395171454028.Google ScholarGoogle ScholarCross RefCross Ref
  19. Andrea Caragliu, Chiara Del Bo, and Peter Nijkamp. 2011. Smart Cities in Europe. J. Urban Technol. 18, 2 (April 2011), 65--82.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kevin Daniel André Carillo. 2017. Let's Stop Trying to be 'Sexy'-Preparing Managers for the (Big) Data-Driven Business Era. Bus. Process Manag. J. 23, 3 (2017).Google ScholarGoogle Scholar
  21. Walter Castelnovo, Gianluca Misuraca, and Alberto Savoldelli. 2016. Smart Cities Governance: The Need for a Holistic Approach to Assessing Urban Participatory Policy Making. Soc. Sci. Comput. Rev. 34, 6 (December 2016), 724--739. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. CL Philip Chen and Chun-Yang Zhang. 2014. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Inf. Sci. 275, (2014), 314--347.Google ScholarGoogle Scholar
  23. Min Chen, Shiwen Mao, and Yunhao Liu. 2014. Big Data: A Survey. Mob. Netw. Appl. 19, 2 (April 2014), 171--209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Arnaud Chiolero. 2013. Big Data in Epidemiology: Too Big to Fail? Epidemiology 24, 6 (November 2013), 938--939.Google ScholarGoogle ScholarCross RefCross Ref
  25. Leandro Dallemule and Thomas H Davenport. 2017. What's Your Data Strategy? Harv. Bus. Rev. 95, 3 (2017), 112--121.Google ScholarGoogle Scholar
  26. Thomas H Davenport and DJ Patil. 2012. Data Scientist. Harv. Bus. Rev. 90, 10 (2012), 70--76.Google ScholarGoogle Scholar
  27. Katharina Ebner, Thilo Buhnen, and Nils Urbach. 2014. Think Big with Big Data: Identifying Suitable Big Data Strategies in Corporate Environments. 3748--3757. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Dror Etzion and J. Alberto Aragon-Correa. 2016. Big Data, Management, and Sustainability: Strategic Opportunities Ahead. Organ. Environ. 29, 2 (June 2016), 147--155.Google ScholarGoogle Scholar
  29. David Fenwick, Tugrul U. Daim, and Nathasit Gerdsri. 2009. Value Driven Technology Road Mapping (VTRM) process integrating decision making and marketing tools: Case of Internet security technologies. Technol. Forecast. Soc. Change 76, 8 (October 2009), 1055--1077.Google ScholarGoogle ScholarCross RefCross Ref
  30. Michael Fitzgerald. 2016. Data-Driven City Management: A Close Look at Amsterdams Smart City Initiative. MIT Sloan Manag. Rev. 57, 4 (2016).Google ScholarGoogle Scholar
  31. C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak, and P. Williams. 2010. Foundations for Smarter Cities. IBM J. Res. Dev. 54, 4 (July 2010), 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah Mokhtar, Abdullah Gani, and Samee Ullah Khan. 2015. The rise of "big data" on cloud computing: Review and open research issues. Inf. Syst. 47, (January 2015), 98--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Marco Iansiti and Karim Lakhani. 2016. The Digital Business Divide Analyzing the operating impact of digital transformation.Google ScholarGoogle Scholar
  34. IBM. 2016. IBM - What is a Data Scientist? - Bringing big data to the enterprise. Retrieved June 1, 2016 from https://www-01.ibm.com/software/data/infosphere/data-scientist/Google ScholarGoogle Scholar
  35. Paul Zikopoulos and Chris Eaton. 2012. Understanding big data: analytics for enterprise class Hadoop and streaming data. McGraw-Hill, New York.Google ScholarGoogle Scholar
  36. H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou, Jignesh M. Patel, Raghu Ramakrishnan, and Cyrus Shahabi. 2014. Big data and its technical challenges. Commun. ACM 57, 7 (July 2014), 86--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Stephanie Jernigan, Sam Ransbotham, and David Kiron. 2016. Data Sharing and Analytics Drive Success With IoT. MIT Sloan Management Review.Google ScholarGoogle Scholar
  38. Anirudh Kadadi, Rajeev Agrawal, Christopher Nyamful, and Rahman Atiq. 2014. Challenges of data integration and interoperability in big data. 38--40.Google ScholarGoogle Scholar
  39. Stephen Kaisler, Frank Armour, J. Alberto Espinosa, and William Money. 2013. Big Data: Issues and Challenges Moving Forward. 995--1004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Avita Katal, Mohammad Wazid, and R. H. Goudar. 2013. Big data: Issues, challenges, tools and Good practices. 404--409.Google ScholarGoogle Scholar
  41. Ralph Katz and Thomas J. Allen. 1982. Investigating the Not Invented Here (NIH) syndrome: A look at the performance, tenure, and communication patterns of 50 R & D Project Groups. RD Manag. 12, 1 (January 1982), 7--20.Google ScholarGoogle Scholar
  42. Zaheer Khan, Ashiq Anjum, and Saad Liaquat Kiani. 2013. Cloud Based Big Data Analytics for Smart Future Cities. 381--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Bram Klievink, Bart-Jan Romijn, Scott Cunningham, and Hans de Bruijn. 2017. Big Data in the Public Sector: Uncertainties and Readiness. Inf. Syst. Front. 19, 2 (April 2017), 267--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Anna Kramers, Mattias Höjer, Nina Lövehagen, and Josefin Wangel. 2014. Smart sustainable cities - Exploring ICT solutions for reduced energy use in cities. Environ. Model. Softw. 56, (June 2014), 52--62.Google ScholarGoogle ScholarCross RefCross Ref
  45. Ohbyung Kwon, Namyeon Lee, and Bongsik Shin. 2014. Data Quality Management, Data Usage Experience and Acquisition Intention of Big Data Analytics. Int. J. Inf. Manag. 34, 3 (June 2014), 387--394.Google ScholarGoogle ScholarCross RefCross Ref
  46. Son K. Lam, Stefan Sleep, Thorsten Hennig-Thurau, Shrihari Sridhar, and Alok R. Saboo. 2017. Leveraging Frontline Employees' Small Data and Firm-Level Big Data in Frontline Management: An Absorptive Capacity Perspective. J. Serv. Res. 20, 1 (February 2017), 12--28.Google ScholarGoogle ScholarCross RefCross Ref
  47. Doug Laney. 2001. 3D data management: Controlling data volume, velocity and variety. META Group Res. Note 6, (2001), 70.Google ScholarGoogle Scholar
  48. J. K. Laurila, Daniel Gatica-Perez, I. Aad, Blom J., Olivier Bornet, Trinh-Minh-Tri Do, O. Dousse, J. Eberle, and M. Miettinen. 2012. The Mobile Data Challenge: Big Data for Mobile Computing Research. Retrieved March 19, 2017 from https://infoscience.epfl.ch/record/192489Google ScholarGoogle Scholar
  49. Steve LaValle, Eric Lesser, Rebecca Shockley, Michael S Hopkins, and Nina Kruschwitz. 2011. Big data, analytics and the path from insights to value. MIT Sloan Manag. Rev. 52, 2 (2011), 21.Google ScholarGoogle Scholar
  50. Chie-Hyeon Lim, Min-Jun Kim, Jun-Yeon Heo, and Kwang-Jae Kim. 2015. Design of informatics-based services in manufacturing industries: case studies using large vehicle-related databases. J. Intell. Manuf. (July 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh, and Angela Hung Byers. 2011. Big data: The next frontier for innovation, competition, and productivity | McKinsey & Company.Google ScholarGoogle Scholar
  52. Blaine Mathieu. 2015. How to use Big Data Analytics as a Competitive Advantage. GoodData. Retrieved June 1, 2016 from http://www.gooddata.com/blog/how-use-big-data-analytics-competitive-advantageGoogle ScholarGoogle Scholar
  53. Viktor Mayer-Schönberger and Kenneth Cukier. 2014. Big data: a revolution that will transform how we live, work, and think (First Mariner Books edition ed.). Mariner Books, Houghton Mifflin Harcourt, Boston.Google ScholarGoogle Scholar
  54. Andrew McAfee, Erik Brynjolfsson, and Thomas H Davenport. 2012. Big data: the management revolution. Harv. Bus. Rev. 90, 10 (2012), 60--68.Google ScholarGoogle Scholar
  55. Tim McGuire, James Manyika, Michael Chui, James Manyika, and Michael Chui. 2012. Why Big Data is the new competitive advantage | Ivey Business Journal.Google ScholarGoogle Scholar
  56. Albert Meijer and M Bolivar. 2013. Governing the smart city: Scaling-up the search for socio-techno synergy.Google ScholarGoogle Scholar
  57. Jack R. Meredith. 2017. Project Management: a Strategic Managerial Approach (Tenth Edition ed.). Wiley, Hoboken.Google ScholarGoogle Scholar
  58. Paolo Neirotti, Alberto De Marco, Anna Corinna Cagliano, Giulio Mangano, and Francesco Scorrano. 2014. Current trends in Smart City initiatives: Some stylised facts. Cities 38, (June 2014), 25--36.Google ScholarGoogle ScholarCross RefCross Ref
  59. NewVantage Partners. 2017. Big Data Executive Survey 2017: Executive Summary. NewVantage Partners LLC. Retrieved April 9, 2017 from http://newvantage.com/wp-content/uploads/2017/01/Big-Data-Executive-Survey-2017-Executive-Summary.pdfGoogle ScholarGoogle Scholar
  60. Karsten Niemeijer. 2014. The ABC's of Big Data. Foresight Investor. Retrieved April 9, 2017 from http://foresightinvestor.com/articles/411823-the-abc-s-of-big-dataGoogle ScholarGoogle Scholar
  61. Daniel Nunan and Marialaura Di Domenico. 2017. Big Data: a Normal Accident Waiting to Happen? J. Bus. Ethics 145, 3 (2017), 481--491.Google ScholarGoogle ScholarCross RefCross Ref
  62. Kay L. O'Halloran, Sabine Tan, Duc-Son Pham, John Bateman, and Andrew Vande Moere. 2018. A Digital Mixed Methods Research Design: Integrating Multimodal Analysis With Data Mining and Information Visualization for Big Data Analytics. J. Mix. Methods Res. 12, 1 (January 2018), 11--30.Google ScholarGoogle Scholar
  63. Mohammed M. Olama, Allen W. McNair, Sreenivas R. Sukumar, and James J. Nutaro. 2014. A Qualitative Readiness-Requirements Assessment Model for Rnterprise Big-Data Infrastructure Investment. 91220E.Google ScholarGoogle Scholar
  64. Salvatore Parise, Bala Iyer, and Dan Vesset. 2012. Four strategies to capture and create value from big data. Ivey Bus. J. 76, 4 (2012), 1--5.Google ScholarGoogle Scholar
  65. Michael E. Prescott. 2014. Big data and competitive advantage at Nielsen. Manag. Decis. 52, 3 (May 2014), 573--601.Google ScholarGoogle Scholar
  66. Dan Puiu, Payam Barnaghi, Ralf Tonjes, Daniel Kumper, Muhammad Intizar Ali, Alessandra Mileo, Josiane Xavier Parreira, Marten Fischer, Sefki Kolozali, Nazli Farajidavar, Feng Gao, Thorben Iggena, Thu-Le Pham, Cosmin-Septimiu Nechifor, Daniel Puschmann, and Joao Fernandes. 2016. CityPulse: Large Scale Data Analytics Framework for Smart Cities. IEEE Access 4, (2016), 1086--1108.Google ScholarGoogle Scholar
  67. V. Rajaraman. 2016. Big data analytics. Resonance 21, 8 (August 2016), 695--716.Google ScholarGoogle ScholarCross RefCross Ref
  68. Sam Ransbotham. 2016. The Smart Way to Deal With Messy Data. MIT Sloan Management Review.Google ScholarGoogle Scholar
  69. Sam Ransbotham and David Kiron. 2017. Analytics as a Source of Business Innovation. MIT Sloan Management Review.Google ScholarGoogle Scholar
  70. Trips Reddy. 2014. 7 Big Data Blunders You're Thankful Your Company Didn't Make. Umbel. Retrieved March 19, 2017 from https://www.umbel.com/blog/big-data/7-big-data-blunders/Google ScholarGoogle Scholar
  71. Jeffrey S. Saltz and Ivan Shamshurin. 2016. Big data team process methodologies: A literature review and the identification of key factors for a project's success. 2872--2879.Google ScholarGoogle Scholar
  72. Benjamin Schneider, Arthur P. Brief, and Richard A. Guzzo. 1996. Creating a Climate and Culture for Sustainable Organizational Change. Organ. Dyn. 24, 4 (March 1996), 7--19.Google ScholarGoogle ScholarCross RefCross Ref
  73. Amir Shaygan, Dilek Ozdemir Gungor, Hakan Kutgun, and Ali Daneshi. 2017. Adoption Criteria Evaluation of Activity Tracking Wristbands for University Students. 1--7.Google ScholarGoogle Scholar
  74. James Short and Steve Todd. 2017. What's Your Data Worth? MIT Sloan Manag. Rev. 58, 3 (2017), 17.Google ScholarGoogle Scholar
  75. Uthayasankar Sivarajah, Muhammad Mustafa Kamal, Zahir Irani, and Vishanth Weerakkody. 2017. Critical analysis of Big Data challenges and analytical methods. J. Bus. Res. 70, (January 2017), 263--286.Google ScholarGoogle ScholarCross RefCross Ref
  76. George Strawn. 2016. Data Scientist. IT Prof. 18, 3 (May 2016), 55--57.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Evan Stubbs. 2014. Big data, big innovation: enabling competitive differentiation through business analytics. Wiley, Hoboken, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Shan Suthaharan. 2016. Big Data Analytics. In Machine Learning Models and Algorithms for Big Data Classification. Springer US, Boston, MA, 31--75.Google ScholarGoogle Scholar
  79. Ian Swanson. 2017. Study: Data Science Platforms Help Insight Leaders Outperform Competition.Google ScholarGoogle Scholar
  80. Paul P. Tallon. 2013. Corporate Governance of Big Data: Perspectives on Value, Risk, and Cost. Computer 46, 6 (June 2013), 32--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Nasser Thabet and Tariq Rahim Soomro. 2015. Big Data Challenges. J. Comput. Eng. Inf. Technol. 4, 3 (September 2015).Google ScholarGoogle Scholar
  82. Emmanouil Tranos and Drew Gertner. 2012. Smart networked cities? Innov. Eur. J. Soc. Sci. Res. 25, 2 (June 2012), 175--190.Google ScholarGoogle ScholarCross RefCross Ref
  83. Raymond Young and Ernest Jordan. 2008. Top management support: Mantra or necessity? Int. J. Proj. Manag. 26, 7 (October 2008), 713--725.Google ScholarGoogle ScholarCross RefCross Ref

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    SCC '18: Proceedings of the 1st ACM/EIGSCC Symposium on Smart Cities and Communities
    June 2018
    47 pages
    ISBN:9781450357869
    DOI:10.1145/3236461

    Copyright © 2018 ACM

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 20 June 2018

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    SCC '18 Paper Acceptance Rate 6 of 16 submissions, 38%Overall Acceptance Rate 64 of 159 submissions, 40%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader
About Cookies On This Site

We use cookies to ensure that we give you the best experience on our website.

Learn more

Got it!