skip to main content
research-article
Open Access

Analytic Eigensystems for Isotropic Distortion Energies

Published:15 February 2019Publication History
Skip Abstract Section

Abstract

Many strategies exist for optimizing non-linear distortion energies in geometry and physics applications, but devising an approach that achieves the convergence promised by Newton-type methods remains challenging. In order to guarantee the positive semi-definiteness required by these methods, a numerical eigendecomposition or approximate regularization is usually needed. In this article, we present analytic expressions for the eigensystems at each quadrature point of a wide range of isotropic distortion energies. These systems can then be used to project energy Hessians to positive semi-definiteness analytically. Unlike previous attempts, our formulation provides compact expressions that are valid both in 2D and 3D, and does not introduce spurious degeneracies. At its core, our approach utilizes the invariants of the stretch tensor that arises from the polar decomposition of the deformation gradient. We provide closed-form expressions for the eigensystems for all these invariants, and use them to systematically derive the eigensystems of any isotropic energy. Our results are suitable for geometry optimization over flat surfaces or volumes, and agnostic to both the choice of discretization and basis function. To demonstrate the efficiency of our approach, we include comparisons against existing methods on common graphics tasks such as surface parameterization and volume deformation.

Skip Supplemental Material Section

Supplemental Material

References

  1. M. Alexa, D. Cohen-Or, and D. Levin. 2000. As-rigid-as-possible shape interpolation. In Proceedings of SIGGRAPH. 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. S. An, T. Kim, and D. L. James. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5 (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Uri M. Ascher and Linda R. Petzold. 1998. Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations. Vol. 61. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings of SIGGRAPH. 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. David Baraff, Andrew Witkin, and Michael Kass. 2003. Untangling cloth. ACM Trans. Graph. 22, 3 (2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Barbič and Doug L. James. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3 (2005), 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Barbič and Y. Zhao. 2011. Real-time large-deformation substructuring. ACM Trans. Graph. 30, 4 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. L. Bernstein, C. Shah, C. Lemire, Z. Devito, M. Fisher, P. Levis, and P. Hanrahan. 2016. Ebb: A DSL for physical simulation on CPUs and GPUs. ACM Trans. Graph. 35, 2 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. Bommes, H. Zimmer, and L. Kobbelt. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3 (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Bonet and R. D. Wood. 2008. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.Google ScholarGoogle Scholar
  11. M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy. 2010. Polygon Mesh Processing. AK Peters.Google ScholarGoogle Scholar
  12. S. Bouaziz, M. Deuss, Y. Schwartzburg, T. Weise, and M. Pauly. 2012. Shape-up: Shaping discrete geometry with projections. Comput. Graph. Forum 31, 5 (2012), 1657--1667. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM Trans. Graph. 33, 4 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. R. Bridson, R. Fedkiw, and J. Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. In ACM Trans. Graph. 21, 3 (2002), 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. I. Chao, U. Pinkall, P. Sanan, and P. Schröder. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4 (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Chen and O. Weber. 2017. GPU-accelerated locally injective shape deformation. ACM Trans. Graph. 36, 6 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Claici, M. Bessmeltsev, S. Schaefer, and J. Solomon. 2017. Isometry-aware preconditioning for mesh parameterization. Comp. Graphics. Forum 36, 5 (2017), 37--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Eigensatz and M. Pauly. 2009. Positional, metric, and curvature control for constraint-based surface deformation. Comput. Graph. Forum 28, 2 (2009), 551--558.Google ScholarGoogle ScholarCross RefCross Ref
  19. X.-M. Fu and Y. Liu. 2016. Computing inversion-free mappings by simplex assembly. ACM Trans. Graph. 35, 6 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. X.-M. Fu, Y. Liu, and B. Guo. 2015. Computing locally injective mappings by advanced MIPS. ACM Trans. Graph. 34, 4 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. G. H. Golub and C. F. Van Loan. 2012. Matrix Computations. Vol. 3. JHU Press.Google ScholarGoogle Scholar
  22. G. Guennebaud, B. Jacob, et al. 2010. Eigen v3. Retrieved from http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  23. D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. 2008. Robust treatment of simultaneous collisions. ACM Trans. Graph. 27, 3 (2008), 23:1--23:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. K. Horman and G. Greiner. 1999. MIPS: An efficient global parameterization method. In Curve and Surface Design. 153--162.Google ScholarGoogle Scholar
  25. Intel. 2018. Math Kernel Library. Retrieved from https://software.intel.com/en-us/mkl.Google ScholarGoogle Scholar
  26. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In SIGGRAPH/Eurog. Symp. on Comp. Anim. 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Jacobson, I. Baran, L. Kavan, J. Popović, and O. Sorkine. 2012. Fast automatic skinning transformations. ACM Trans. on Graphics 31, 4 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. F. Kjolstad, S. Kamil, J. Ragan-Kelley, D. I. W. Levin, S. Sueda, D. Chen, E. Vouga, D. M. Kaufman, G. Kanwar, W. Matusik, and S. Amarasinghe. 2016. Simit: A language for physical simulation. ACM Trans. Graph. 35, 2 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. T. G. Kolda and B. W. Bader. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3 (2009), 455--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Z. Kovalsky, M. Galun, and Y. Lipman. 2016. Accelerated quadratic proxy for geometric optimization. ACM Trans. Graph. 35, 4 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. J. Gortler. 2008. A local/global approach to mesh parameterization. Computer Graphics Forum 27, 5 (2008), 1495--1504.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. T. Liu, S. Bouaziz, and L. Kavan. 2017. Quasi-Newton methods for real-time simulation of hyperelastic materials. ACM Trans. Graph. 36, 3 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. E Marsden and T. JR Hughes. 1994. Mathematical Foundations of Elasticity. Dover Publications.Google ScholarGoogle Scholar
  34. A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and E. Sifakis. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. R. Narain, M. Overby, and G. E. Brown. 2016. ADMM ⊇ projective dynamics: Fast simulation of general constitutive models. In Proc. of the ACM SIGGRAPH/Eurog. Symp. on Comp. Anim. 21--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Nocedal and S. J. Wright. 2006. Numerical Optimization. Springer.Google ScholarGoogle Scholar
  37. T. Papadopoulo and M. I. A. Lourakis. 2000. Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications. Springer, 554--570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. F. Pighin and J. P. Lewis. 2007. Practical least-squares for computer graphics. In ACM SIGGRAPH Courses. 1--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. Rabinovich, R. Poranne, D. Panozzo, and O. Sorkine-Hornung. 2017. Scalable locally injective mappings. ACM Trans. Graph. 36, 2 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. Shtengel, R. Poranne, O. Sorkine-Hornung, S. Z. Kovalsky, and Y. Lipman. 2017. Geometric optimization via composite majorization. ACM Trans. Graph. 36, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. E. Sifakis and J. Barbic. 2012. FEM simulation of 3D deformable solids: A practitioner’s guide to theory, discretization and model reduction. In ACM SIGGRAPH Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. B. Smith, F. de Goes, and T. Kim. 2018. Stable Neo-Hookean flesh simulation. ACM Trans. Graph. 37, 2 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. J. Smith and S. Schaefer. 2015. Bijective parameterization with free boundaries. ACM Trans. Graph. 34, 4 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. O. Sorkine and M. Alexa. 2007. As-rigid-as-possible surface modeling. In Eurog. Symposium on Geometry Processing, Vol. 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. A. Stomakhin, R. Howes, C. Schroeder, and J. M. Teran. 2012. Energetically consistent invertible elasticity. In ACM SIGGRAPH/Eurog. Symp. Comp. Anim. 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. M. Tang, D. Manocha, and R. Tong. 2010. Fast continuous collision detection using deforming non-penetration filters. In Proceedings of I3D. ACM, 7--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. 2005. Robust quasistatic finite elements and flesh simulation. In ACM SIGGRAPH/Eurog. Symp. on Comp. Anim. 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. C. D. Twigg and Z. Kačić-Alesić. 2010. Point cloud glue: Constraining simulations using the procrustes transform. In ACM SIGGRAPH/Eurog. Symp. on Comp. Anim. 45--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. C. von Tycowicz, C. Schulz, H.-P. Seidel, and K. Hildebrandt. 2013. An efficient construction of reduced deformable objects. ACM Trans. Graph. 32, 6 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. H. Wang. 2015. A Chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Trans. Graph. 34, 6 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Audrey Wong, David Eberle, and Theodore Kim. 2018. Clean cloth inputs: Removing character self-intersections with volume simulation. In ACM SIGGRAPH Talks. Article 42, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. H. Xu, F. Sin, Y. Zhu, and J. Barbič. 2015. Nonlinear material design using principal stretches. ACM Trans. Graph. 34, 4 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Analytic Eigensystems for Isotropic Distortion Energies

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 1
      February 2019
      176 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3300145
      Issue’s Table of Contents

      Copyright © 2019 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 15 February 2019
      • Revised: 1 September 2018
      • Accepted: 1 September 2018
      • Received: 1 May 2018
      Published in tog Volume 38, Issue 1

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format