skip to main content
research-article

The Vector Heat Method

Published:07 June 2019Publication History
Skip Abstract Section

Abstract

This article describes a method for efficiently computing parallel transport of tangent vectors on curved surfaces, or more generally, any vector-valued data on a curved manifold. More precisely, it extends a vector field defined over any region to the rest of the domain via parallel transport along shortest geodesics. This basic operation enables fast, robust algorithms for extrapolating level set velocities, inverting the exponential map, computing geometric medians and Karcher/Fréchet means of arbitrary distributions, constructing centroidal Voronoi diagrams, and finding consistently ordered landmarks. Rather than evaluate parallel transport by explicitly tracing geodesics, we show that it can be computed via a short-time heat flow involving the connection Laplacian. As a result, transport can be achieved by solving three prefactored linear systems, each akin to a standard Poisson problem. To implement the method, we need only a discrete connection Laplacian, which we describe for a variety of geometric data structures (point clouds, polygon meshes, etc.). We also study the numerical behavior of our method, showing empirically that it converges under refinement, and augment the construction of intrinsic Delaunay triangulations so that they can be used in the context of tangent vector field processing.

Skip Supplemental Material Section

Supplemental Material

a24-sharp.mp4

References

  1. D. Adalsteinsson and J. Sethian. 1999. The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 1 (1999), 2--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Alexa and M. Wardetzky. 2011. Discrete Laplacians on general polygonal meshes. ACM Trans. Graph. 30, 4 (2011), Article 102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Arnold and L. Li. 2017. Finite element exterior calculus with lower-order terms. Math. Comput. 86, 307 (2017), 2193--2212.Google ScholarGoogle ScholarCross RefCross Ref
  4. O. Azencot, M. Ovsjanikov, F. Chazal, and M. Ben-Chen. 2015. Discrete derivatives of vector fields on surfaces—An operator approach. ACM Trans. Graph. 34, 3 (2015), Article 29.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Belyaev and P. A. Fayolle. 2015. On variational and PDE-based distance function approximations. Comp. Graph. Forum 34, 8 (2015), 104--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. N. Berline, E. Getzler, and M. Vergne. 1992. Heat Kernels and Dirac Operators. Springer.Google ScholarGoogle Scholar
  7. A. Bobenko and B. Springborn. 2007. A discrete Laplace-Beltrami operator for simplicial surfaces. Disc. Comp. Geom. 38, 4 (2007), 740--756. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. F. Bogo, J. Romero, M. Loper, and M. Black. 2014. FAUST: Dataset and evaluation for 3D mesh registration. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin. 2013. Quad-mesh generation and processing: A survey. Comp. Graph. Forum 32, 6 (2013), 51--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. R. Bridson. 2007. Fast Poisson disk sampling in arbitrary dimensions. In Proceedings of ACM SIGGRAPH 2007 Sketches. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Brun. 2007. Manifolds in Image Science and Visualization. Ph.D. Dissertation. Institutionen för Medicinsk Teknik.Google ScholarGoogle Scholar
  12. S. Buss and J. Fillmore. 2001. Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20, 2 (2001), 95--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T. Caissard, D. Coeurjolly, J. O. Lachaud, and T. Roussillon. 2017. Heat kernel Laplace-Beltrami operator on digital surfaces. In Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, Vol. 10502. Springer, 241--253.Google ScholarGoogle Scholar
  14. J. Chen and Y. Han. 1990. Shortest paths on a polyhedron. In Proceedings of the 6th Annual Symposium on Computational Geometry (SCG’90).Google ScholarGoogle Scholar
  15. Y. Chen, T. Davis, W. Hager, and S. Rajamanickam. 2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35, 3 (2008), Article 22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. K. Crane, F. de Goes, M. Desbrun, and P. Schröder. 2013a. Digital geometry processing with discrete exterior calculus. In Proceedings of ACM SIGGRAPH 2013 Courses (SIGGRAPH’13).Google ScholarGoogle Scholar
  17. K. Crane, M. Desbrun, and P. Schröder. 2010. Trivial connections on discrete surfaces. Comp. Graph. Forum 29, 5 (2010), 1525--1533.Google ScholarGoogle ScholarCross RefCross Ref
  18. K. Crane, C. Weischedel, and M. Wardetzky. 2013b. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. A. Davis. 2004. Algorithm 832: UMFPACK V4.3—An unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 2 (2004), Article 152.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. F. de Goes, M. Desbrun, M. Meyer, and T. DeRose. 2016. Subdivision exterior calculus for geometry processing. ACM Trans. Graph. 35, 4 (2016), Article 133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Desbrun, E. Kanso, and Y. Tong. 2006. Discrete differential forms for computational modeling. In Proceedings of ACM SIGGRAPH 2006 Courses (SIGGRAPH’06).Google ScholarGoogle Scholar
  22. Q. Du, M. Gunzburger, and L. Ju. 2003. Constrained centroidal Voronoi tessellations for surfaces. SIAM J. Sci. Comp. 24, 5 (2003), 1488--1506. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. N. El Karoui and H. Wu. 2015. Graph connection Laplacian and random matrices with random blocks. Inf. Inference 4, 1 (03 2015), 1--44.Google ScholarGoogle Scholar
  24. M. Fisher, B. Springborn, A. Bobenko, and P. Schroder. 2006. An algorithm for the construction of intrinsic Delaunay triangulations with applications to digital geometry processing. In Proceedings of ACM SIGGRAPH 2006 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. P. Fletcher, S. Venkatasubramanian, and S. Joshi. 2009. The geometric median on Riemannian manifolds with application to robust atlas estimation. NeuroImage 45, 1 (2009), S142--S152.Google ScholarGoogle ScholarCross RefCross Ref
  26. A. Gentle. 2002. Regge calculus: A unique tool for numerical relativity. Gen. Rel. and Grav. 34, 10 (2002), 1701--1718.Google ScholarGoogle ScholarCross RefCross Ref
  27. A. Gillman and P. G. Martinsson. 2014. A direct solver with O(N) complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation method. SIAM J. Sci. Comp. 36, 4 (2014), A2023--A2046.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Grigor’yan. 2009. Heat Kernel and Analysis on Manifolds. American Mathematical Society.Google ScholarGoogle Scholar
  29. P. Herholz, T. Davis, and M. Alexa. 2017a. Localized solutions of sparse linear systems for geometry processing. ACM Trans. Graph. 36, 6 (2017), Article 183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Herholz, F. Haase, and M. Alexa. 2017b. Diffusion diagrams: Voronoi cells and centroids from diffusion. Comp. Graph. Forum 36, 2 (2017), 163--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Itoh and R. Sinclair. 2004. Thaw: A tool for approximating cut loci on a triangulation of a surface. Experiment. Math. 13, 3 (2004), 309--325.Google ScholarGoogle ScholarCross RefCross Ref
  32. I. Kezurer, S. Kovalsky, R. Basri, and Y. Lipman. 2015. Tight relaxation of quadratic matching. In Proceedings of the Eurographics Symposium on Geometry Processing (SGP’15). 115--128.Google ScholarGoogle Scholar
  33. R. Kimmel and J. Sethian. 1998. Fast marching methods on triangulated domains. Proc. Nat. Acad. Sci. 95, 15 (1998), 8431--8435.Google ScholarGoogle ScholarCross RefCross Ref
  34. F. Knöppel, K. Crane, U. Pinkall, and P. Schröder. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4 (2013), Article 59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. F. Knöppel, K. Crane, U. Pinkall, and P. Schröder. 2015. Stripe patterns on surfaces. ACM Trans. Graph. 34, 4 (2015), Article 39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. Spielman. 2016. Sparsified Cholesky and multigrid solvers for connection Laplacians. In Proceedings of the Symposium on Theory of Computing (STOC’16).Google ScholarGoogle Scholar
  37. B. Lin, J. Yang, X. He, and J. Ye. 2014. Geodesic distance function learning via heat flow on vector fields. In Proceedings of the International Conference on Machine Learning. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Y. Liu, B. Prabhakaran, and X. Guo. 2012. Point-based manifold harmonics. IEEE Trans. Vis. Comp. Graph. 18, 10 (2012), 1693--1703. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Y. J. Liu, C. X. Xu, R. Yi, D. Fan, and Y. He. 2016. Manifold differential evolution (MDE): A global optimization method for geodesic centroidal Voronoi tessellations on meshes. ACM Trans. Graph. 35, 6 (2016), Article 243. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M. Lorenzi and X. Pennec. 2014. Efficient parallel transport of deformations in time series of images: From Schild’s to pole ladder. J. Math. Imaging Vis. 50, 1 (2014), 5--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Louis, B. Charlier, P. Jusselin, S. Pal, and S. Durrleman. 2018. A fanning scheme for the parallel transport along geodesics on Riemannian manifolds. SIAM J. Numer. Anal. 56, 4 (2018), 2563--2584.Google ScholarGoogle ScholarCross RefCross Ref
  42. M. Ludewig. 2018. Heat kernel asymptotics, path integrals and infinite-dimensional determinants. J. Geom. Phys. 131 (2018), 66--88.Google ScholarGoogle ScholarCross RefCross Ref
  43. E. Melvær and M. Reimers. 2012. Geodesic polar coordinates on polygonal meshes. Comp. Graph. Forum 31, 8 (2012), 2423--2435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. 1987. The discrete geodesic problem. SIAM J. Comput. 16, 4 (1987), 647--668. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. M. Mohamed, A. Hirani, and R. Samtaney. 2016. Comparison of discrete Hodge star operators for surfaces. Comput. Aided Des. 78, C (2016), 118--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Myles, N. Pietroni, and D. Zorin. 2014. Robust field-aligned global parametrization. ACM Trans. Graph. 33, 4 (2014), Article 135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. T. Nguyen, K. Karciauskas, and J. Peters. 2016. C<sup>1</sup> finite elements on non-tensor-product 2d and 3d manifolds. Appl. Math. Comput. 272 (2016), 148--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. D. Panozzo, I. Baran, O. Diamanti, and O. Sorkine-Hornung. 2013. Weighted averages on surfaces. ACM Trans. Graph. 32, 4 (2013), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. K. Polthier and M. Schmies. 1998. Straightest Geodesics on Polyhedral Surfaces. Springer-Verlag.Google ScholarGoogle Scholar
  50. Y. Qin, X. Han, H. Yu, Y. Yu, and J. Zhang. 2016. Fast and exact discrete geodesic computation based on triangle-oriented wavefront propagation. ACM Trans. Graph. 35, 4 (2016), Article 125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4 (2006), 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. T. Regge. 1961. General relativity without coordinates. Il Nuovo Cimento 19, 3 (1961), 558--571.Google ScholarGoogle ScholarCross RefCross Ref
  53. R. Schmidt. 2013. Stroke parameterization. Comp. Graph. Forum 32, 2 (2013), 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  54. R. Schmidt, C. Grimm, and B. Wyvill. 2006. Interactive decal compositing with discrete exponential maps. ACM Trans. Graph. 25, 3 (2006), 605--613. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. R. Schmidt and K. Singh. 2010. Meshmixer: An interface for rapid mesh composition. In Proceedings of SIGGRAPH 2010 Talks. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. N. Sharp and K. Crane. 2018. Variational surface cutting. ACM Trans. Graph. 37, 4 (2018), Article 156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. A. Singer and H.-T. Wu. 2012. Vector diffusion maps and the connection Laplacian. Commun. Pure Appl. Math. 65, 8 (2012), 1--72.Google ScholarGoogle Scholar
  58. D. Spielman and S.-H. Teng. 2004. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC’04). 81--90.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. V. Surazhsky, T. Surazhsky, D. Kirsanov, S. Gortler, and H. Hoppe. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 3 (2005), 553--560. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. X. Tricoche, G. Scheuermann, and H. Hagen. 2000. Higher order singularities in piecewise linear vector fields. In Proceedings of the 9th IMA Conference on the Mathematics of Surfaces. 99--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. A. Vaxman, M. Campen, O. Diamanti, D. Panozzo, D. Bommes, K. Hildebrandt, and M. Ben-Chen. 2016. Directional field synthesis, design, and processing. Comp. Graph. Forum 35, 2 (2016), 1--28.Google ScholarGoogle ScholarCross RefCross Ref
  62. E. Weiszfeld. 1937. Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math. Journal 43 (1937), 355--386.Google ScholarGoogle Scholar
  63. X. Ying, X. Wang, and Y. He. 2013. Saddle vertex graph (SVG): A novel solution to the discrete geodesic problem. ACM Trans. Graph. 32, 6 (2013), Article 170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. E. Zhang, K. Mischaikow, and G. Turk. 2006. Vector field design on surfaces. ACM Trans. Graph. 25, 4 (2006), 1294--1326. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The Vector Heat Method

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 38, Issue 3
          June 2019
          125 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3322934
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 June 2019
          • Accepted: 1 March 2019
          • Revised: 1 February 2019
          • Received: 1 May 2018
          Published in tog Volume 38, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format