Abstract
This article describes a method for efficiently computing parallel transport of tangent vectors on curved surfaces, or more generally, any vector-valued data on a curved manifold. More precisely, it extends a vector field defined over any region to the rest of the domain via parallel transport along shortest geodesics. This basic operation enables fast, robust algorithms for extrapolating level set velocities, inverting the exponential map, computing geometric medians and Karcher/Fréchet means of arbitrary distributions, constructing centroidal Voronoi diagrams, and finding consistently ordered landmarks. Rather than evaluate parallel transport by explicitly tracing geodesics, we show that it can be computed via a short-time heat flow involving the connection Laplacian. As a result, transport can be achieved by solving three prefactored linear systems, each akin to a standard Poisson problem. To implement the method, we need only a discrete connection Laplacian, which we describe for a variety of geometric data structures (point clouds, polygon meshes, etc.). We also study the numerical behavior of our method, showing empirically that it converges under refinement, and augment the construction of intrinsic Delaunay triangulations so that they can be used in the context of tangent vector field processing.
Supplemental Material
- D. Adalsteinsson and J. Sethian. 1999. The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 1 (1999), 2--22. Google Scholar
Digital Library
- M. Alexa and M. Wardetzky. 2011. Discrete Laplacians on general polygonal meshes. ACM Trans. Graph. 30, 4 (2011), Article 102. Google Scholar
Digital Library
- D. Arnold and L. Li. 2017. Finite element exterior calculus with lower-order terms. Math. Comput. 86, 307 (2017), 2193--2212.Google Scholar
Cross Ref
- O. Azencot, M. Ovsjanikov, F. Chazal, and M. Ben-Chen. 2015. Discrete derivatives of vector fields on surfaces—An operator approach. ACM Trans. Graph. 34, 3 (2015), Article 29.Google Scholar
Digital Library
- A. Belyaev and P. A. Fayolle. 2015. On variational and PDE-based distance function approximations. Comp. Graph. Forum 34, 8 (2015), 104--118. Google Scholar
Digital Library
- N. Berline, E. Getzler, and M. Vergne. 1992. Heat Kernels and Dirac Operators. Springer.Google Scholar
- A. Bobenko and B. Springborn. 2007. A discrete Laplace-Beltrami operator for simplicial surfaces. Disc. Comp. Geom. 38, 4 (2007), 740--756. Google Scholar
Digital Library
- F. Bogo, J. Romero, M. Loper, and M. Black. 2014. FAUST: Dataset and evaluation for 3D mesh registration. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Google Scholar
Digital Library
- D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin. 2013. Quad-mesh generation and processing: A survey. Comp. Graph. Forum 32, 6 (2013), 51--76. Google Scholar
Digital Library
- R. Bridson. 2007. Fast Poisson disk sampling in arbitrary dimensions. In Proceedings of ACM SIGGRAPH 2007 Sketches. Google Scholar
Digital Library
- A. Brun. 2007. Manifolds in Image Science and Visualization. Ph.D. Dissertation. Institutionen för Medicinsk Teknik.Google Scholar
- S. Buss and J. Fillmore. 2001. Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20, 2 (2001), 95--126. Google Scholar
Digital Library
- T. Caissard, D. Coeurjolly, J. O. Lachaud, and T. Roussillon. 2017. Heat kernel Laplace-Beltrami operator on digital surfaces. In Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, Vol. 10502. Springer, 241--253.Google Scholar
- J. Chen and Y. Han. 1990. Shortest paths on a polyhedron. In Proceedings of the 6th Annual Symposium on Computational Geometry (SCG’90).Google Scholar
- Y. Chen, T. Davis, W. Hager, and S. Rajamanickam. 2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35, 3 (2008), Article 22. Google Scholar
Digital Library
- K. Crane, F. de Goes, M. Desbrun, and P. Schröder. 2013a. Digital geometry processing with discrete exterior calculus. In Proceedings of ACM SIGGRAPH 2013 Courses (SIGGRAPH’13).Google Scholar
- K. Crane, M. Desbrun, and P. Schröder. 2010. Trivial connections on discrete surfaces. Comp. Graph. Forum 29, 5 (2010), 1525--1533.Google Scholar
Cross Ref
- K. Crane, C. Weischedel, and M. Wardetzky. 2013b. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5 (2013). Google Scholar
Digital Library
- T. A. Davis. 2004. Algorithm 832: UMFPACK V4.3—An unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 2 (2004), Article 152.Google Scholar
Digital Library
- F. de Goes, M. Desbrun, M. Meyer, and T. DeRose. 2016. Subdivision exterior calculus for geometry processing. ACM Trans. Graph. 35, 4 (2016), Article 133. Google Scholar
Digital Library
- M. Desbrun, E. Kanso, and Y. Tong. 2006. Discrete differential forms for computational modeling. In Proceedings of ACM SIGGRAPH 2006 Courses (SIGGRAPH’06).Google Scholar
- Q. Du, M. Gunzburger, and L. Ju. 2003. Constrained centroidal Voronoi tessellations for surfaces. SIAM J. Sci. Comp. 24, 5 (2003), 1488--1506. Google Scholar
Digital Library
- N. El Karoui and H. Wu. 2015. Graph connection Laplacian and random matrices with random blocks. Inf. Inference 4, 1 (03 2015), 1--44.Google Scholar
- M. Fisher, B. Springborn, A. Bobenko, and P. Schroder. 2006. An algorithm for the construction of intrinsic Delaunay triangulations with applications to digital geometry processing. In Proceedings of ACM SIGGRAPH 2006 Courses. Google Scholar
Digital Library
- P. Fletcher, S. Venkatasubramanian, and S. Joshi. 2009. The geometric median on Riemannian manifolds with application to robust atlas estimation. NeuroImage 45, 1 (2009), S142--S152.Google Scholar
Cross Ref
- A. Gentle. 2002. Regge calculus: A unique tool for numerical relativity. Gen. Rel. and Grav. 34, 10 (2002), 1701--1718.Google Scholar
Cross Ref
- A. Gillman and P. G. Martinsson. 2014. A direct solver with O(N) complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation method. SIAM J. Sci. Comp. 36, 4 (2014), A2023--A2046.Google Scholar
Cross Ref
- A. Grigor’yan. 2009. Heat Kernel and Analysis on Manifolds. American Mathematical Society.Google Scholar
- P. Herholz, T. Davis, and M. Alexa. 2017a. Localized solutions of sparse linear systems for geometry processing. ACM Trans. Graph. 36, 6 (2017), Article 183. Google Scholar
Digital Library
- P. Herholz, F. Haase, and M. Alexa. 2017b. Diffusion diagrams: Voronoi cells and centroids from diffusion. Comp. Graph. Forum 36, 2 (2017), 163--175. Google Scholar
Digital Library
- J. Itoh and R. Sinclair. 2004. Thaw: A tool for approximating cut loci on a triangulation of a surface. Experiment. Math. 13, 3 (2004), 309--325.Google Scholar
Cross Ref
- I. Kezurer, S. Kovalsky, R. Basri, and Y. Lipman. 2015. Tight relaxation of quadratic matching. In Proceedings of the Eurographics Symposium on Geometry Processing (SGP’15). 115--128.Google Scholar
- R. Kimmel and J. Sethian. 1998. Fast marching methods on triangulated domains. Proc. Nat. Acad. Sci. 95, 15 (1998), 8431--8435.Google Scholar
Cross Ref
- F. Knöppel, K. Crane, U. Pinkall, and P. Schröder. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4 (2013), Article 59. Google Scholar
Digital Library
- F. Knöppel, K. Crane, U. Pinkall, and P. Schröder. 2015. Stripe patterns on surfaces. ACM Trans. Graph. 34, 4 (2015), Article 39. Google Scholar
Digital Library
- R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. Spielman. 2016. Sparsified Cholesky and multigrid solvers for connection Laplacians. In Proceedings of the Symposium on Theory of Computing (STOC’16).Google Scholar
- B. Lin, J. Yang, X. He, and J. Ye. 2014. Geodesic distance function learning via heat flow on vector fields. In Proceedings of the International Conference on Machine Learning. Google Scholar
Digital Library
- Y. Liu, B. Prabhakaran, and X. Guo. 2012. Point-based manifold harmonics. IEEE Trans. Vis. Comp. Graph. 18, 10 (2012), 1693--1703. Google Scholar
Digital Library
- Y. J. Liu, C. X. Xu, R. Yi, D. Fan, and Y. He. 2016. Manifold differential evolution (MDE): A global optimization method for geodesic centroidal Voronoi tessellations on meshes. ACM Trans. Graph. 35, 6 (2016), Article 243. Google Scholar
Digital Library
- M. Lorenzi and X. Pennec. 2014. Efficient parallel transport of deformations in time series of images: From Schild’s to pole ladder. J. Math. Imaging Vis. 50, 1 (2014), 5--17. Google Scholar
Digital Library
- M. Louis, B. Charlier, P. Jusselin, S. Pal, and S. Durrleman. 2018. A fanning scheme for the parallel transport along geodesics on Riemannian manifolds. SIAM J. Numer. Anal. 56, 4 (2018), 2563--2584.Google Scholar
Cross Ref
- M. Ludewig. 2018. Heat kernel asymptotics, path integrals and infinite-dimensional determinants. J. Geom. Phys. 131 (2018), 66--88.Google Scholar
Cross Ref
- E. Melvær and M. Reimers. 2012. Geodesic polar coordinates on polygonal meshes. Comp. Graph. Forum 31, 8 (2012), 2423--2435. Google Scholar
Digital Library
- J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. 1987. The discrete geodesic problem. SIAM J. Comput. 16, 4 (1987), 647--668. Google Scholar
Digital Library
- M. Mohamed, A. Hirani, and R. Samtaney. 2016. Comparison of discrete Hodge star operators for surfaces. Comput. Aided Des. 78, C (2016), 118--125. Google Scholar
Digital Library
- A. Myles, N. Pietroni, and D. Zorin. 2014. Robust field-aligned global parametrization. ACM Trans. Graph. 33, 4 (2014), Article 135. Google Scholar
Digital Library
- T. Nguyen, K. Karciauskas, and J. Peters. 2016. C<sup>1</sup> finite elements on non-tensor-product 2d and 3d manifolds. Appl. Math. Comput. 272 (2016), 148--158. Google Scholar
Digital Library
- D. Panozzo, I. Baran, O. Diamanti, and O. Sorkine-Hornung. 2013. Weighted averages on surfaces. ACM Trans. Graph. 32, 4 (2013), 1--11. Google Scholar
Digital Library
- K. Polthier and M. Schmies. 1998. Straightest Geodesics on Polyhedral Surfaces. Springer-Verlag.Google Scholar
- Y. Qin, X. Han, H. Yu, Y. Yu, and J. Zhang. 2016. Fast and exact discrete geodesic computation based on triangle-oriented wavefront propagation. ACM Trans. Graph. 35, 4 (2016), Article 125. Google Scholar
Digital Library
- N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4 (2006), 1460--1485. Google Scholar
Digital Library
- T. Regge. 1961. General relativity without coordinates. Il Nuovo Cimento 19, 3 (1961), 558--571.Google Scholar
Cross Ref
- R. Schmidt. 2013. Stroke parameterization. Comp. Graph. Forum 32, 2 (2013), 1--9.Google Scholar
Cross Ref
- R. Schmidt, C. Grimm, and B. Wyvill. 2006. Interactive decal compositing with discrete exponential maps. ACM Trans. Graph. 25, 3 (2006), 605--613. Google Scholar
Digital Library
- R. Schmidt and K. Singh. 2010. Meshmixer: An interface for rapid mesh composition. In Proceedings of SIGGRAPH 2010 Talks. Google Scholar
Digital Library
- N. Sharp and K. Crane. 2018. Variational surface cutting. ACM Trans. Graph. 37, 4 (2018), Article 156. Google Scholar
Digital Library
- A. Singer and H.-T. Wu. 2012. Vector diffusion maps and the connection Laplacian. Commun. Pure Appl. Math. 65, 8 (2012), 1--72.Google Scholar
- D. Spielman and S.-H. Teng. 2004. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC’04). 81--90.Google Scholar
Digital Library
- V. Surazhsky, T. Surazhsky, D. Kirsanov, S. Gortler, and H. Hoppe. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 3 (2005), 553--560. Google Scholar
Digital Library
- X. Tricoche, G. Scheuermann, and H. Hagen. 2000. Higher order singularities in piecewise linear vector fields. In Proceedings of the 9th IMA Conference on the Mathematics of Surfaces. 99--113. Google Scholar
Digital Library
- A. Vaxman, M. Campen, O. Diamanti, D. Panozzo, D. Bommes, K. Hildebrandt, and M. Ben-Chen. 2016. Directional field synthesis, design, and processing. Comp. Graph. Forum 35, 2 (2016), 1--28.Google Scholar
Cross Ref
- E. Weiszfeld. 1937. Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math. Journal 43 (1937), 355--386.Google Scholar
- X. Ying, X. Wang, and Y. He. 2013. Saddle vertex graph (SVG): A novel solution to the discrete geodesic problem. ACM Trans. Graph. 32, 6 (2013), Article 170. Google Scholar
Digital Library
- E. Zhang, K. Mischaikow, and G. Turk. 2006. Vector field design on surfaces. ACM Trans. Graph. 25, 4 (2006), 1294--1326. Google Scholar
Digital Library
Index Terms
The Vector Heat Method
Recommendations
Elastic Shape Analysis of Surfaces with Second-Order Sobolev Metrics: A Comprehensive Numerical Framework
AbstractThis paper introduces a set of numerical methods for Riemannian shape analysis of 3D surfaces within the setting of invariant (elastic) second-order Sobolev metrics. More specifically, we address the computation of geodesics and geodesic distances ...
Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes
Centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagram such that the generating point of each Voronoi cell is also its center of mass. The CVT has broad applications in computer graphics, such as meshing, stippling, sampling, etc. ...
Edge subdivision schemes and the construction of smooth vector fields
SIGGRAPH '06: ACM SIGGRAPH 2006 PapersVertex- and face-based subdivision schemes are now routinely used in geometric modeling and computational science, and their primal/dual relationships are well studied. In this paper, we interpret these schemes as defining bases for discrete ...





Comments