skip to main content
research-article

LineUp: Computing Chain-Based Physical Transformation

Published:19 January 2019Publication History
Skip Abstract Section

Abstract

In this article, we introduce a novel method that can generate a sequence of physical transformations between 3D models with different shape and topology. Feasible transformations are realized on a chain structure with connected components that are 3D printed. Collision-free motions are computed to transform between different configurations of the 3D printed chain structure. To realize the transformation between different 3D models, we first voxelize these input models into a similar number of voxels. The challenging part of our approach is to generate a simple path—as a chain configuration to connect most voxels. A layer-based algorithm is developed with theoretical guarantee of the existence and the path length. We find that collision-free motion sequence can always be generated when using a straight line as the intermediate configuration of transformation. The effectiveness of our method is demonstrated by both the simulation and the experimental tests taken on 3D printed chains.

Skip Supplemental Material Section

Supplemental Material

References

  1. Moritz Bächer, Bernd Bickel, Doug L. James, and Hanspeter Pfister. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. 31, 4, Article 47 (2012), 47:1--47:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans. Graph. 33, 4, Article 96 (2014), 96:1--96:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4, Article 63 (2010), 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bernd Bickel, Paolo Cignoni, Luigi Malomo, and Nico Pietroni. 2018. State of the art on stylized fabrication. Computer Graphics Forum (2018).Google ScholarGoogle Scholar
  5. T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, M. Overmars, S. Robbins, I. Streinu, G. Toussaint, and S. Whitesides. 2001. Locked and unlocked polygonal chains in three dimensions. Discrete Comput. Geom. 26, 3 (2001), 269--281. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jacques Calì, Dan A. Calian, Cristina Amati, Rebecca Kleinberger, Anthony Steed, Jan Kautz, and Tim Weyrich. 2012. 3D-printing of non-assembly, articulated models. ACM Trans. Graph. 31, 6, Article 130 (2012), 130:1--130:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jason H. Cantarella, Erik D. Demaine, Hayley N. Iben, and James F. O’Brien. 2004. An energy-driven approach to linkage unfolding. In Proceedings of the 20th Annual Symposium on Computational Geometry (SCG’04). 134--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen Koltun. 2011. Probabilistic reasoning for assembly-based 3D modeling. ACM Trans. Graph. 30, 4, Article 35 (2011), 35:1--35:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Siddhartha Chaudhuri and Vladlen Koltun. 2010. Data-driven suggestions for creativity support in 3D modeling. ACM Trans. Graph. 29, 6, Article 183 (2010), 183:1--183:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Robert Connelly, Erik D. Demaine, and Günter Rote. 2003. Blowing up polygonal linkages. Discrete Comput. Geom. 30, 2 (2003), 205--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Erik D. Demaine, David Eppstein, Jeff Erickson, George W. Hart, and Joseph O’Rourke. 2002. Vertex-unfoldings of simplicial manifolds. In Proceedings of the Eighteenth Annual Symposium on Computational Geometry (SCG’02). 237--243. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Noah Duncan, Lap-Fai Yu, and Sai-Kit Yeung. 2016. Interchangeable components for hands-on assembly based modelling. ACM Trans. Graph. 35, 6, Article 234 (2016), 234:1--234:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Herbert Edelsbrunner and Ernst Peter Mücke. 1990. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 1 (1990), 66--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Anatolij T. Fomenko and Tosiyasu Kunii. 1997. Topological Modeling for Visualization. Springer.Google ScholarGoogle Scholar
  15. Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. 2004. Modeling by example. ACM Trans. Graph. 23, 3 (2004), 652--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Akash Garg, Alec Jacobson, and Eitan Grinspun. 2016. Computational design of reconfigurables. ACM Trans. Graph. 35, 4, Article 90 (2016), 90:1--90:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping objects from flat plates with tension-actuated curvature. ACM Trans. Graph. 36, 4, Article 64 (2017), 64:1--64:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Justin Harris, Kathy Hirsh-Pasek, and Nora S. Newcombe. 2013. Understanding spatial transformations: Similarities and differences between mental rotation and mental folding. Cognit. Process. 14, 2 (2013), 105--115.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kailun Hu, Shuo Jin, and Charlie C. L. Wang. 2015. Support slimming for single material based additive manufacturing. Comput.-Aided Des. 65 (2015), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Qixing Huang, Vladlen Koltun, and Leonidas Guibas. 2011. Joint shape segmentation with linear programming. ACM Trans. Graph. 30, 6, Article 125 (2011), 125:1--125:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Yi-Jheng Huang, Shu-Yuan Chan, Wen-Chieh Lin, and Shan-Yu Chuang. 2016. Making and animating transformable 3D models. Comput. Graphics 54 (2016), 127--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Conrado R. Ruiz Jr., Sang N. Le, Jinze Yu, and Kok-Lim Low. 2014. Multi-style paper pop-up designs from 3D models. Comput. Graphics Forum 33, 2 (2014), 487--496. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen Koltun. 2012. A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31, 4, Article 55 (2012), 55:1--55:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. David Ron Karger, Rajeev Motwani, and G. D. S. Ramkumar. 1997. On approximating the longest path in a graph. Algorithmica 18, 1 (1997), 82--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy J. Mitra, Alla Sheffer, and Helmut Pottmann. 2008. Curved folding. ACM Trans. Graph. 27, 3, Article 75 (2008), 75:1--75:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond developable: Computational design and fabrication with auxetic materials. ACM Trans. Graph. 35, 4, Article 89 (2016), 89:1--89:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Bernhard Korte and Jens Vygen. 2006. Combinatorial Optimization: Theory and Algorithms. 3rd Edition, Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Haruhisa Kurokawa, Akiya Kamimura, Eiichi Yoshida, Kohji Tomita, Shigeru Kokaji, and Satoshi Murata. 2003. M-TRAN II: Metamorphosis from a four-legged walker to a caterpillar. In 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. 2454--2459.Google ScholarGoogle Scholar
  29. Haruhisa Kurokawa, Kohji Tomita, Akiya Kamimura, Shigeru Kokaji, Takashi Hasuo, and Satoshi Murata. 2008. Distributed self-reconfiguration of M-TRAN III modular robotic system. The International Journal of Robotics Research 27, 3--4 (2008), 373--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Timothy Langlois, Ariel Shamir, Daniel Dror, Wojciech Matusik, and David I. W. Levin. 2016. Stochastic structural analysis for context-aware design and fabrication. ACM Trans. Graph. 35, 6, Article 226 (2016), 226:1--226:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Honghua Li, Ruizhen Hu, Ibraheem Alhashim, and Hao Zhang. 2015. Foldabilizing furniture. ACM Trans. Graph. 34, 4, Article 90 (2015), 90:1--90:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Xian-Ying Li, Tao Ju, Yan Gu, and Shi-Min Hu. 2011. A geometric study of v-style pop-ups: Theories and algorithms. ACM Trans. Graph. 30, 4, Article 98 (2011), 98:1--98:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sheng-Jie Luo, Yonghao Yue, Chun-Kai Huang, Yu-Huan Chung, Sei Imai, Tomoyuki Nishita, and Bing-Yu Chen. 2015. Legolization: Optimizing LEGO designs. ACM Trans. Graph. 34, 6, Article 222 (2015), 222:1--222:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Silvano Martello and Paolo Toth. 1990. Knapsack Problems: Algorithms and Computer Implementations. John Wiley 8 Sons, Inc., New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Meher McArthur and Robert J. Lang. 2012. Folding Paper: The Infinite Possibilities of Origami. Turtle Publishing.Google ScholarGoogle Scholar
  36. Rico Moeckel, Cyril Jaquier, Kevin Drapel, Elmar Dittrich, Andres Upegui, and Auke Jan Ijspeert. 2006. Exploring adaptive locomotion with YaMoR, a novel autonomous modular robot with bluetooth interface. Industrial Robot: An International Journal 33, 4 (2006), 285--290.Google ScholarGoogle ScholarCross RefCross Ref
  37. Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, and Leif Kobbelt. 2015. Reduced-order shape optimization using offset surfaces. ACM Trans. Graph. 34, 4, Article 102 (2015), 102:1--102:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Joseph O’Rourke. 2011. How To Fold It: The Mathematics of Linkages, Origami, and Polyhedra. Cambridge University Press.Google ScholarGoogle Scholar
  39. Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic textures for additive fabrication. ACM Trans. Graph. 34, 4 (2015), 135:1--135:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational design and automated fabrication of Kirchhoff-plateau surfaces. ACM Trans. Graph. 36, 4, Article 62 (2017), 62:1--62:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. 2014. Programmable self-assembly in a thousand-robot swarm. Science 345, 6198 (2014), 795--799.Google ScholarGoogle Scholar
  42. Graham G. Ryland and Harry H. Cheng. 2010. Design of iMobot, an intelligent reconfigurable mobile robot with novel locomotion. In IEEE International Conference on Robotics and Automation (ICRA’10). 60--65.Google ScholarGoogle Scholar
  43. Behnam Salemi, Mark Moll, and Weimin Shen. 2006. SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’06). 3636--3641.Google ScholarGoogle ScholarCross RefCross Ref
  44. Galen Hajime Sasaki. 1987. Optimization by Simulated Annealing: A Time-Complexity Analysis. Ph.D. Dissertation, University of Illinois at Urbana-Champaign.Google ScholarGoogle Scholar
  45. Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to control elasticity in 3D printing. ACM Trans. Graph. 34, 4, Article 136 (2015), 136:1--136:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Oana Sidi, Oliver van Kaick, Yanir Kleiman, Hao Zhang, and Daniel Cohen-Or. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30, 6, Article 126 (2011), 126:1--126:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus Gross. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4, Article 82 (2013), 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Peng Song, Chi-Wing Fu, Yueming Jin, Hongfei Xu, Ligang Liu, Pheng-Ann Heng, and Daniel Cohen-Or. 2017a. Reconfigurable interlocking furniture. ACM Trans. Graph. 36, 6, Article 174 (2017), 174:1--174:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Peng Song, Xiaofei Wang, Xiao Tang, Chi-Wing Fu, Hongfei Xu, Ligang Liu, and Niloy J. Mitra. 2017b. Computational design of wind-up toys. ACM Trans. Graph. 36, 6, Article 238 (2017), 238:1--238:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM Trans. Graph. 31, 4, Article 48 (2012), 48:1--48:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Joan Stiles and Catherine Stern. 2001. Developmental change in spatial cognitive processing: Complexity effects and block construction performance in preschool children. J. Cognit. Dev. 2, 2 (2001), 157--187.Google ScholarGoogle ScholarCross RefCross Ref
  52. Kasper Stoy, David Brandt, and David J. Christensen. 2010. Self-Reconfigurable Robots: An Introduction. The MIT Press.Google ScholarGoogle Scholar
  53. Ileana Streinu. 2000. A combinatorial approach to planar non-colliding robot arm motion planning. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS’00). 443--453. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Timothy Sun and Changxi Zheng. 2015. Computational design of twisty joints and puzzles. ACM Trans. Graph. 34, 4, Article 101 (2015), 101:1--101:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Disney Storybook Art Team. 2010. Toy Story 3 Mix 8 Match. Disney Pr, ISBN13 9781423121411.Google ScholarGoogle Scholar
  56. Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014. Pteromys: Interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph. 33, 4, Article 65 (2014), 65:1--65:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Jonathan Wai, David Lubinski, and Camilla P. Benbow. 2009. Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology 101, 4 (2009), 817--835.Google ScholarGoogle Scholar
  58. Shiqing Xin, Chi-Fu Lai, Chi-Wing Fu, Tien-Tsin Wong, Ying He, and Daniel Cohen-Or. 2011. Making burr puzzles from 3D models. ACM Trans. Graph. 30, 4, Article 97 (2011), 97:1--97:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Gary Yngve and Greg Turk. 2002. Robust creation of implicit surfaces from polygonal meshes. IEEE Trans. Visual. Comput. Graphics 8, 4 (2002), 346--359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Zhong You. 2014. Folding structures out of flat materials. Science 345, 6197 (2014), 623--624.Google ScholarGoogle Scholar
  61. Minjing Yu, Yong-Jin Liu, and Charlie C. L. Wang. 2017. EasySRRobot: An easy-to-build self-reconfigurable robot with optimized design. In IEEE International Conference on Robotics and Biomimetics (IEEE-ROBIO’17). 1094--1099.Google ScholarGoogle Scholar
  62. Minjing Yu, Yong-Jin Liu, Guozhen Zhao, Chun Yu, and Yuanchun Shi. 2018. Spatial ability improvement by tangible interaction: A case study with EasySRRobot. In Proceedings of the 2018 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA’18). ACM, LBW013:1--LBW013:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Ye Yuan, Changxi Zheng, and Stelian Coros. 2018. Computational design of transformables. Comput.theor Graphics Forum 37 (2018), 103--113.Google ScholarGoogle Scholar
  64. Wen-Qi Zhang and Yong-Jin Liu. 2011. Approximating the longest paths in grid graphs. Theor. Comput. Sci. 412, 39 (2011), 5340--5350.Google ScholarGoogle ScholarCross RefCross Ref
  65. Xiaoting Zhang, Xinyi Le, Zihao Wu, Emily Whiting, and Charlie C. L. Wang. 2016. Data-driven bending elasticity design by shell thickness. Comput. Graph. Forum 35, 5 (2016), 157--166.Google ScholarGoogle ScholarCross RefCross Ref
  66. Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case structural analysis. ACM Trans. Graph. 32, 4, Article 137 (2013), 137:1--137:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Yahan Zhou, Shinjiro Sueda, Wojciech Matusik, and Ariel Shamir. 2014. Boxelization: Folding 3D objects into boxes. ACM Trans. Graph. 33, 4, Article 71 (2014), 71:1--71:8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. LineUp: Computing Chain-Based Physical Transformation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 1
      February 2019
      176 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3300145
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 January 2019
      • Accepted: 1 November 2018
      • Revised: 1 October 2018
      • Received: 1 May 2018
      Published in tog Volume 38, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format