skip to main content
research-article

Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling

Published:19 January 2019Publication History
Skip Abstract Section

Abstract

We present a strong fluid-rigid coupling for Smoothed Particle Hydrodynamics (SPH) fluids and rigid bodies with particle-sampled surfaces. The approach interlinks the iterative pressure update at fluid particles with a second SPH solver that computes artificial pressure at rigid-body particles. The introduced SPH rigid-body solver models rigid-rigid contacts as artificial density deviations at rigid-body particles. The corresponding pressure is iteratively computed by solving a global formulation that is particularly useful for large numbers of rigid-rigid contacts. Compared to previous SPH coupling methods, the proposed concept stabilizes the fluid-rigid interface handling. It significantly reduces the computation times of SPH fluid simulations by enabling larger time steps. Performance gain factors of up to 58 compared to previous methods are presented. We illustrate the flexibility of the presented fluid-rigid coupling by integrating it into DFSPH, IISPH, and a recent SPH solver for highly viscous fluids. We further show its applicability to a recent SPH solver for elastic objects. Large scenarios with up to 90M particles of various interacting materials and complex contact geometries with up to 90k rigid-rigid contacts are shown. We demonstrate the competitiveness of our proposed rigid-body solver by comparing it to Bullet.

Skip Supplemental Material Section

Supplemental Material

a5-gissler.mp4

References

  1. S. Adami, X. Y. Hu, and N. A. Adams. 2012. A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 231, 21 (2012), 7057--7075. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Muzaffer Akbay, Nicholas Nobles, Victor Zordan, and Tamar Shinar. 2018. An extended partitioned method for conservative solid-fluid coupling. ACM Trans. Graph. 37, 4 (2018), 86:1--86:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013a. Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. 32, 6 (2013), 182:1--182:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Nadir Akinci, Jens Cornelis, Gizem Akinci, and Matthias Teschner. 2013b. Coupling elastic solids with smoothed particle hydrodynamics fluids. Comput. Animat. Virt. Worlds 24, 3--4 (2013), 195--203.Google ScholarGoogle ScholarCross RefCross Ref
  5. Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31, 4 (2012), 62:1--62:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2015. A stream function solver for liquid simulations. ACM Trans. Graph. 34, 4 (2015), 53:1--53:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and Matthias Teschner. 2018a. Pressure boundaries for implicit incompressible SPH. ACM Trans. Graph. 37, 2 (Feb. 2018), 14:1--14:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Stefan Band, Christoph Gissler, Andreas Peer, and Matthias Teschner. 2018b. MLS pressure boundaries for divergence-free and viscous SPH fluids. Comput. Graph. 76 (2018), 37--46.Google ScholarGoogle ScholarCross RefCross Ref
  9. Stefan Band, Christoph Gissler, and Matthias Teschner. 2017. Moving least squares boundaries for SPH fluids. In Virtual Reality Interactions and Physical Simulations. The Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Markus Becker, Hendrik Tessendorf, and Matthias Teschner. 2009. Direct forcing for lagrangian rigid-fluid coupling. IEEE Trans. Visual. Comput. Graph. 15, 3 (2009), 493--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Nathan Bell, Yizhou Yu, and Peter J. Mucha. 2005. Particle-based simulation of granular materials. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jan Bender, Kenny Erleben, and Jeff Trinkle. 2014. Interactive simulation of rigid body dynamics in computer graphics. Comput. Graph. Forum 33, 1 (2014), 246--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jan Bender and Dan Koschier. 2017. Divergence-free SPH for incompressible and viscous fluids. IEEE Trans. Visual. Comput. Graph. 23, 3 (2017), 1193--1206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jan Bender, Dan Koschier, Tassilo Kugelstadt, and Marcel Weiler. 2017. A micropolar material model for turbulent SPH fluids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 4:1--4:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mark Carlson, Peter J. Mucha, and Greg Turk. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 3 (2004), 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Nuttapong Chentanez, Tolga G. Goktekin, Bryan E. Feldman, and James F. O’Brien. 2006. Simultaneous coupling of fluids and deformable bodies. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 83--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Nuttapong Chentanez and Matthias Müller. 2010. Real-time simulation of large bodies of water with small scale details. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 197--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Simon Clavet, Philippe Beaudoin, and Pierre Poulin. 2005. Particle-based viscoelastic fluid simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Erwin Coumans. 2018. Bullet physics library. Retrieved from http://bulletphysics.org/.Google ScholarGoogle Scholar
  21. Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun. 2015. Power particles: An incompressible fluid solver based on power diagrams. ACM Trans. Graph. 34, 4 (2015), 50--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mathieu Desbrun, Marie-Paule Cani, et al. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation, Vol. 96. Springer, 61--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Crispin Deul, Patrick Charrier, and Jan Bender. 2014. Position-based rigid body dynamics. Comput. Animat. Virt. Worlds 27, 2 (2014), 103--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013. Chimera grids for water simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 85--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Makoto Fujisawa and Kenjiro T. Miura. 2015. An efficient boundary handling with a modified density calculation for SPH. Comput. Graph. Forum 34, 7 (2015), 155--162. Retrieved from arXiv:https://onlinelibrary.wiley.com/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Dan Gerszewski, Ladislav Kavan, Peter-Pike Sloan, and Adam W. Bargteil. 2015. Basis enrichment and solid-fluid coupling for model-reduced fluid simulation. Comput. Animat. Virt. Worlds 26, 2 (2015), 109--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Robert A. Gingold and Joseph J. Monaghan. 1977. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Month. Notices Roy. Astron. Soc. 181, 3 (1977), 375--389.Google ScholarGoogle ScholarCross RefCross Ref
  28. Christoph Gissler, Stefan Band, Andreas Peer, Markus Ihmsen, and Matthias Teschner. 2017. Generalized drag force for particle-based simulations. Comput. Graph. 69 (2017), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jón Tómas Grétarsson, Nipun Kwatra, and Ronald Fedkiw. 2011. Numerically stable fluid-structure interactions between compressible flow and solid structures. J. Comput. Phys. 230, 8 (2011), 3062--3084. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24, 3 (2005), 973--981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Takahiro Harada. 2007. Real-time rigid body simulation on GPUs. In GPU Gems 3, Hubert Nguyen (Ed.). Addison-Wesley Professional, Chapter 29, 611--632.Google ScholarGoogle Scholar
  32. Xiaowei He, Ning Liu, Sheng Li, Hongan Wang, and Guoping Wang. 2012. Local poisson SPH for viscous incompressible fluids. Comput. Graph. Forum 31, 6 (2012), 1948--1958. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014a. Implicit incompressible SPH. IEEE Trans. Visual. Comput. Graph. 20, 3 (2014), 426--435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. 2014b. SPH fluids in computer graphics. In Eurographics (State of the Art Reports). The Eurographics Association.Google ScholarGoogle Scholar
  35. Richard Keiser, Bart Adams, Philip Dutré, Leonidas Guibas, and Mark Pauly. 2006. Multiresolution particle-based fluids. Technical Report 520. Department of Computer Science, ETH Zurich.Google ScholarGoogle Scholar
  36. Richard Keiser, Bart Adams, Dominique Gasser, Paolo Bazzi, Philip Dutre, and Markus Gross. 2005. A unified Lagrangian approach to solid-fluid animation. In Proceedings of the Eurographics/IEEE VGTC Symposium Point-Based Graphics. 125--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3 (2006), 820--825. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Dan Koschier and Jan Bender. 2017. Density maps for improved SPH boundary handling. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 1:1--1:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Nipun Kwatra, Chris Wojtan, Mark Carlson, Irfan E. Essa, Peter J. Mucha, and Greg Turk. 2010. Fluid simulation with articulated bodies. IEEE Trans. Visual. Comput. Graph. 16, 1 (2010), 70--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Michael Lentine, J. T. Gretarsson, Craig Schroeder, Avi Robinson-Mosher, and Ronald Fedkiw. 2011. Creature control in a fluid environment. IEEE Trans. Visual. Comput. Graph. 17, 5 (2011), 682--693. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wenlong Lu, Ning Jin, and Ronald P. Fedkiw. 2016. Two-way coupling of fluids to reduced deformable bodies. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Ladislav Kavan and Chris Wojtan (Eds.). The Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Leon B. Lucy. 1977. A numerical approach to the testing of the fission hypothesis. Astron. J. 82 (1977), 1013--1024.Google ScholarGoogle ScholarCross RefCross Ref
  43. Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Trans. Graph. 32, 4 (2013), 104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. 2014. Unified particle physics for real-time applications. ACM Trans. Graph. 33, 4 (2014), 153:1--153:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Brian Vincent Mirtich. 1996. Impulse-based Dynamic Simulation of Rigid Body Systems. Ph.D. Dissertation.Google ScholarGoogle Scholar
  46. Joseph J. Monaghan. 1994. Simulating free surface flows with SPH. J. Comput. Phys. 110, 2 (1994), 399--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Joseph J. Monaghan. 2005. Smoothed particle hydrodynamics. Rep. Progr. Phys. 68, 8 (2005), 1703.Google ScholarGoogle ScholarCross RefCross Ref
  48. Joseph J. Monaghan. 2012. Smoothed particle hydrodynamics and its diverse applications. Ann. Rev. Fluid Mech. 44 (2012), 323--346.Google ScholarGoogle ScholarCross RefCross Ref
  49. Joseph P. Morris, Patrick J. Fox, and Yi Zhu. 1997. Modeling low reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 1 (1997), 214--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Matthias Müller, Simon Schirm, Matthias Teschner, Bruno Heidelberger, and Markus Gross. 2004. Interaction of fluids with deformable solids. Comput. Animat. Virtual Worlds 15, 3--4 (2004), 159--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. G. Oger, M. Doring, B. Alessandrini, and P. Ferrant. 2006. Two-dimensional SPH simulations of wedge water entries. J. Comput. Phys. 213, 2 (2006), 803--822. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Seungtaik Oh, Younghee Kim, and Byung-Seok Roh. 2009. Impulse-based rigid body interaction in SPH. Comput. Animat. Virtual Worlds 20, 2--3 (2009), 215--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Saket Patkar, Mridul Aanjaneya, Wenlong Lu, Michael Lentine, and Ronald Fedkiw. 2016. Towards positivity preservation for monolithic two-way solid-fluid coupling. J. Comput. Phys. 312 (2016), 82--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. 2018. An implicit SPH formulation for incompressible linearly elastic solids. Comput. Graph. Forum 37, 6 (2018), 135--148. Retrieved from arXiv:https://onlinelibrary.wiley.com/.Google ScholarGoogle ScholarCross RefCross Ref
  56. Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An implicit viscosity formulation for SPH fluids. ACM Trans. Graph. 34, 4 (2015), 114:1--114:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Daniel J. Price. 2012. Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231, 3 (2012), 759--794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Avi Robinson-Mosher, R. Elliot English, and Ronald Fedkiw. 2009. Accurate tangential velocities for solid fluid coupling. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 227--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Avi Robinson-Mosher, Craig Schroeder, and Ronald Fedkiw. 2011. A symmetric positive definite formulation for monolithic fluid structure interaction. J. Comput. Phys. 230, 4 (2011), 1547--1566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Avi Robinson-Mosher, Tamar Shinar, Jon Gretarsson, Jonathan Su, and Ronald Fedkiw. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27, 3 (2008), 46:1--46:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Hagit Schechter and Robert Bridson. 2012. Ghost SPH for animating water. ACM Trans. Graph. 31, 4 (2012), 61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Barbara Solenthaler, Peter Bucher, Nuttapong Chentanez, Matthias Müller, and Markus Gross. 2011. SPH based shallow water simulation. In Virtual Reality Interactions and Physical Simulations. Eurographics Association.Google ScholarGoogle Scholar
  63. Barbara Solenthaler and Renato Pajarola. 2008. Density contrast SPH interfaces. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible SPH. ACM Trans. Graph. 28, 3 (2009), 40:1--40:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Barbara Solenthaler, Jürg Schläfli, and Renato Pajarola. 2007. A unified particle model for fluid-solid interactions. Comput. Animat. Virtual Worlds 18, 1 (2007), 69--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Jos Stam and Eugene Fiume. 1995. Depicting fire and other gaseous phenomena using diffusion processes. In Proceedings of the ACM Conference on Computer Graphics and Interactive Techniques. ACM, 129--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Tetsuya Takahashi, Yoshinori Dobashi, Tomoyuki Nishita, and Ming C. Lin. 2017. An efficient hybrid incompressible SPH solver with interface handling for boundary conditions. Comput. Graph. Forum (2017), 1--12.Google ScholarGoogle Scholar
  68. Tetsuya Takahashi and Ming C. Lin. 2016. A multilevel SPH solver with unified solid boundary handling. In Pacific Graphics. Eurographics Association, 517--526.Google ScholarGoogle Scholar
  69. Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. 2011. Articulated swimming creatures. ACM Trans. Graph. 30, 4 (2011), 58:1--58:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Nils Thürey, Klaus Iglberger, and Ulrich Rüde. 2006. Free surface flows with moving and deforming objects with LBM. In Vision, Modeling, and Visualization. Akademische Verlagsgesellschaft Aka GmbH, 193--200.Google ScholarGoogle Scholar
  71. Nils Thürey, Matthias Müller-Fischer, Simon Schirm, and Markus Gross. 2007. Real-time breaking waves for shallow water simulations. In Pacific Graphics. IEEE, 39--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Richard Tonge, Feodor Benevolenski, and Andrey Voroshilov. 2012. Mass splitting for jitter-free parallel rigid body simulation. ACM Trans. Graph. 31, 4 (2012), 105:1--105:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Mauricio Vines, Ben Houston, Jochen Lang, and Won-Sook Lee. 2014. Vortical inviscid flows with two-way solid-fluid coupling. IEEE Trans. Visual. Comput. Graph. 20, 2 (2014), 303--315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. 2017. Infinite continuous adaptivity for incompressible SPH. ACM Trans. Graph. 36, 4 (2017), 102:1--102:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Hongyi Xu, Yili Zhao, and Jernej Barbic. 2014. Implicit multibody penalty-based distributed contact. IEEE Trans. Visual. Comput. Graph. 20, 9 (2014), 1266--1279.Google ScholarGoogle ScholarCross RefCross Ref
  76. X. Yan, C-F. Li, X-S. Chen, and S-M. Hu. 2018. MPM simulation of interacting fluids and solids. Comput. Graph. Forum 37, 8 (2018), 183--193.Google ScholarGoogle ScholarCross RefCross Ref
  77. Omar Zarifi and Christopher Batty. 2017. A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 7:1--7:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 1
      February 2019
      176 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3300145
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 January 2019
      • Revised: 1 September 2018
      • Accepted: 1 September 2018
      • Received: 1 July 2018
      Published in tog Volume 38, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format