skip to main content
research-article

Functional Characterization of Deformation Fields

Published:24 January 2019Publication History
Skip Abstract Section

Abstract

In this article, we present a novel representation for deformation fields of 3D shapes, by considering the induced changes in the underlying metric. In particular, our approach allows one to represent a deformation field in a coordinate-free way as a linear operator acting on real-valued functions defined on the shape. Such a representation provides both a way to relate deformation fields to other classical functional operators and enables analysis and processing of deformation fields using standard linear-algebraic tools. This opens the door to a wide variety of applications such as explicitly adding extrinsic information into the computation of functional maps, intrinsic shape symmetrization, joint deformation design through precise control of metric distortion, and coordinate-free deformation transfer without requiring pointwise correspondences. Our method is applicable to both surface and volumetric shape representations and we guarantee the equivalence between the operator-based and standard deformation field representation under mild genericity conditions in the discrete setting. We demonstrate the utility of our approach by comparing it with existing techniques and show how our representation provides a powerful toolbox for a wide variety of challenging problems.

Skip Supplemental Material Section

Supplemental Material

a8-corman.mp4

References

  1. Bart Adams, Maks Ovsjanikov, Michael Wand, Hans-Peter Seidel, and Leonidas J. Guibas. 2008. Meshless modeling of deformable shapes and their motion. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Maks Ovsjanikov. 2013. An operator approach to tangent vector field processing. In Computer Graphics Forum, Vol. 32. 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Omri Azencot, Etienne Corman, Mirela Ben-Chen, and Maks Ovsjanikov. 2017. Consistent functional cross field design for mesh quadrangulation. ACM Transactions on Graphics (TOG) 36, 4 (2017), 92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Omri Azencot, Maks Ovsjanikov, Frédéric Chazal, and Mirela Ben-Chen. 2015. Discrete derivatives of vector fields on surfaces—An operator approach. ACM Transactions on Graphics (TOG) 34, 3 (2015), 29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Ilya Baran, Daniel Vlasic, Eitan Grinspun, and Jovan Popović. 2009. Semantic deformation transfer. In ACM Transactions on Graphics (TOG) 28, 3 (August 2009), Article 36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Alexander I. Bobenko, Helmut Pottmann, and Johannes Wallner. 2010. A curvature theory for discrete surfaces based on mesh parallelity. Mathematische Annalen 348, 1 (2010), 1--24.Google ScholarGoogle ScholarCross RefCross Ref
  7. Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. 2014. FAUST: Dataset and evaluation for 3D mesh registration. In Proc. CVPR. IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation. In ACM Transactions on Graphics (TOG) 28, 3 (August 2009), Article 77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Davide Boscaini, Davide Eynard, Drosos Kourounis, and Michael M. Bronstein. 2015. Shape-from-operator: Recovering shapes from intrinsic operators. In Computer Graphics Forum, Vol. 34. Wiley Online Library, 265--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon Mesh Processing. CRC Press.Google ScholarGoogle Scholar
  11. Mario Botsch and Olga Sorkine. 2008. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics 14, 1 (2008), 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Bronstein, M. Bronstein, and R. Kimmel. 2007. Numerical Geometry of Non-rigid Shapes. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. George Celniker and Dave Gossard. 1991. Deformable curve and surface finite-elements for free-form shape design. In ACM SIGGRAPH Computer Graphics, Vol. 25. ACM, 257--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Philippe G. Ciarlet. 2000. Theory of Shells. Vol. 3. Elsevier.Google ScholarGoogle Scholar
  15. Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2011. Spin transformations of discrete surfaces. In ACM Transactions on Graphics (TOG) 30, 4 (July 2011), Article 104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Tamal K. Dey, Pawas Ranjan, and Yusu Wang. 2012. Eigen deformation of 3D models. The Visual Computer 28, 6--8 (2012), 585--595. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. P. do Carmo. 2013. Riemannian Geometry. Birkhäuser, Boston.Google ScholarGoogle Scholar
  18. Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. 2013. QEx: Robust quad mesh extraction. ACM Transactions on Graphics (TOG) 32, 6 (2013), 168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ilya Eckstein, J.-P. Pons, Yiying Tong, C.-C. J. Kuo, and Mathieu Desbrun. 2007. Generalized surface flows for mesh processing. In Proc. SGP. Eurographics Association, 183--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Michael Eigensatz and Mark Pauly. 2009. Positional, metric, and curvature control for constraint-based surface deformation. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 551--558.Google ScholarGoogle Scholar
  21. Michael Grant and Stephen Boyd. 2014. CVX: Matlab Software for Disciplined Convex Programming, version 2.1. http://cvxr.com/cvx.Google ScholarGoogle Scholar
  22. Igor Guskov, Wim Sweldens, and Peter Schröder. 1999. Multiresolution signal processing for meshes. In Proc. SIGGRAPH. 325--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Tim Hoffmann, Andrew O. Sageman-Furnas, and Max Wardetzky. 2016. A discrete parametrized surface theory in R<sup>3</sup> . International Mathematics Research Notices (2016).Google ScholarGoogle Scholar
  24. Martin Kilian, Niloy J. Mitra, and Helmut Pottmann. 2007. Geometric modeling in shape space. ACM Transactions on Graphics (TOG) 26, 3 (2007), 64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal direction fields. ACM Transactions on Graphics (TOG) 32, 4 (2013), 59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. 1998. Interactive multi-resolution modeling on arbitrary meshes. In Proc. SIGGRAPH. 105--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Artiom Kovnatsky, Michael M. Bronstein, Alexander M. Bronstein, Klaus Glashoff, and Ron Kimmel. 2013. Coupled quasi-harmonic bases. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 439--448.Google ScholarGoogle Scholar
  28. Bruno Lévy. 2006. Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In Proceedings of the IEEE International Conference on Shape Modeling and Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yaron Lipman, Olga Sorkine, Daniel Cohen-Or, David Levin, Claudio Rossi, and Hans-Peter Seidel. 2004. Differential coordinates for interactive mesh editing. In Shape Modeling Applications. 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Or Litany, Emanuele Rodolà, Alex M. Bronstein, and Michael M. Bronstein. 2017. Fully spectral partial shape matching. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 247--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Beibei Liu, Yiying Tong, Fernando De Goes, and Mathieu Desbrun. 2016. Discrete connection and covariant derivative for vector field analysis and design. ACM Transactions on Graphics (TOG) 35, 3 (2016), 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Martinez Esturo, C. Rössl, and H. Theisel. 2013. Generalized metric energies for continuous shape deformation. Springer LNCS (Proc. Curves and Surfaces 2012) 8177, 1 (2013), 135--157.Google ScholarGoogle Scholar
  33. Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2014. Strain based dynamics. In Proc. SCA. 149--157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson. 2006. Physically based deformable models in computer graphics. In Computer Graphics Forum, Vol. 25. Wiley Online Library, 809--836.Google ScholarGoogle Scholar
  35. Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel Cohen-Or. 2005. A sketch-based interface for detail-preserving mesh editing. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH) 24, 3 (2005), 1142--1147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. 2012. Functional maps: A flexible representation of maps between shapes. ACM Transactions on Graphics (TOG) 31, 4 (2012), 30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Maks Ovsjanikov, Etienne Corman, Michael Bronstein, Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas, Frederic Chazal, and Alex Bronstein. 2016. Computing and processing correspondences with functional maps. In SIGGRAPH ASIA 2016 Courses. ACM, 9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Daniele Panozzo, Yaron Lipman, Enrico Puppo, and Denis Zorin. 2012. Fields on symmetric surfaces. ACM Transactions on Graphics (TOG) 31, 4 (2012), 111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame fields: Anisotropic and non-orthogonal cross fields. Proc. ACM SIGGRAPH) 33, 4 (2014), 134:1--134:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Nikolas Paries, Patrick Degener, and Reinhard Klein. 2007. Simple and efficient mesh editing with consistent local frames. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications (PG’07). IEEE, 461--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Dmitry Pavlov, Patrick Mullen, Yiying Tong, Eva Kanso, Jerrold E. Marsden, and Mathieu Desbrun. 2011. Structure-preserving discretization of incompressible fluids. Physica D: Nonlinear Phenomena 240, 6 (2011), 443--458.Google ScholarGoogle ScholarCross RefCross Ref
  42. Jonathan Pokrass, Alexander M. Bronstein, Michael M. Bronstein, Pablo Sprechmann, and Guillermo Sapiro. 2013. Sparse modeling of intrinsic correspondences. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 459--468.Google ScholarGoogle Scholar
  43. Martin Rumpf and Max Wardetzky. 2014. Geometry processing from an elastic perspective. GAMM-Mitteilungen 37, 2 (2014), 184--216.Google ScholarGoogle ScholarCross RefCross Ref
  44. Raif M. Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Leonidas Guibas. 2013. Map-based exploration of intrinsic shape differences and variability. ACM Trans. Graph. 32, 4 (2013), 72:1--72:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Matan Sela, Yonathan Aflalo, and Ron Kimmel. 2015. Computational caricaturization of surfaces. CVIU 141 (2015), 1--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. 2011. As-killing-as-possible vector fields for planar deformation. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 1543--1552.Google ScholarGoogle Scholar
  47. Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Proc. SGP. 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl, and H.-P. Seidel. 2004. Laplacian surface editing. In Proc. SGP. ACM, 175--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Robert W. Sumner and Jovan Popović. 2004. Deformation transfer for triangle meshes. In ACM Transactions on Graphics (TOG) 23, 3 (August 2004). 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically deformable models. In ACM Siggraph Computer Graphics 21, 4 (July 1987), 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Bernhard Thomaszewski, Simon Pabst, and Wolfgang Strasser. 2009. Continuum-based strain limiting. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 569--576.Google ScholarGoogle Scholar
  52. Federico Tombari, Samuele Salti, and Luigi Di Stefano. 2010. Unique signatures of histograms for local surface description. In European Conference on Computer Vision. Springer, 356--369. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Bruno Vallet and Bruno Lévy. 2008. Spectral geometry processing with manifold harmonics. Computer Graphics Forum 27, 2 (2008), 251--260.Google ScholarGoogle ScholarCross RefCross Ref
  54. Amir Vaxman, Christian Müller, and Ofir Weber. 2015. Conformal mesh deformations with Möbius transformations. ACM Transactions on Graphics (TOG) 34, 4 (2015), 55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. 2006. Vector field based shape deformations. In Proc. SIGGRAPH, Vol. 25. 1118--1125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Christoph Von-Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt. 2015. Real-time nonlinear shape interpolation. ACM Transactions on Graphics (TOG) 34, 3 (2015), 34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. William Welch and Andrew Witkin. 1992. Variational surface modeling. In ACM SIGGRAPH Computer Graphics, Vol. 26. ACM, 157--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Mengxiao Yin, Guiqing Li, Huina Lu, Yaobin Ouyang, Zhibang Zhang, and Chuhua Xian. 2015. Spectral pose transfer. Computer Aided Geometric Design 35 (2015), 82--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and Heung-Yeung Shum. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics (TOG) 23, 3 (2004), 644--651. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Rhaleb Zayer, Christian Rössl, Zachi Karni, and Hans-Peter Seidel. 2005. Harmonic guidance for surface deformation. In Computer Graphics Forum, Vol. 24. Wiley Online Library, 601--609.Google ScholarGoogle Scholar
  61. Zhibang Zhang, Guiqing Li, Huina Lu, Yaobin Ouyang, Mengxiao Yin, and Chuhua Xian. 2015. Fast as-isometric-as-possible shape interpolation. Computers 8 Graphics 46 (2015), 244--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Qian Zheng, Zhuming Hao, Hui Huang, Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2015. Skeleton-intrinsic symmetrization of shapes. In Computer Graphics Forum, Vol. 34. Wiley Online Library, 275--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Denis Zorin, Peter Schröder, and Wim Sweldens. 1997. Interactive multiresolution mesh editing. In Proc. SIGGRAPH. 259--268. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Functional Characterization of Deformation Fields

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 38, Issue 1
        February 2019
        176 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3300145
        Issue’s Table of Contents

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 24 January 2019
        • Revised: 1 October 2018
        • Accepted: 1 October 2018
        • Received: 1 December 2016
        Published in tog Volume 38, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format