skip to main content
research-article
Public Access

Knittable Stitch Meshes

Authors Info & Claims
Published:19 January 2019Publication History
Skip Abstract Section

Abstract

We introduce knittable stitch meshes for modeling complex 3D knit structures that can be fabricated via knitting. We extend the concept of stitch mesh modeling, which provides a powerful 3D design interface for knit structures but lacks the ability to produce actually knittable models. Knittable stitch meshes ensure that the final model can be knitted. Moreover, they include novel representations for handling important shaping techniques that allow modeling more complex knit structures than prior methods. In particular, we introduce shift paths that connect the yarn for neighboring rows, general solutions for properly connecting pieces of knit fabric with mismatched knitting directions without introducing seams, and a new structure for representing short rows, a shaping technique for knitting that is crucial for creating various 3D forms, within the stitch mesh modeling framework. Our new 3D modeling interface allows for designing knittable structures with complex surface shapes and topologies, and our knittable stitch mesh structure contains all information needed for fabricating these shapes via knitting. Furthermore, we present a scheduling algorithm for providing step-by-step hand knitting instructions to a knitter, so that anyone who knows how to knit can reproduce the complex models that can be designed using our approach. We show a variety of 3D knit shapes and garment examples designed and knitted using our system.

Skip Supplemental Material Section

Supplemental Material

a10-wu.mp4

References

  1. Maneesh Agrawala, Doantam Phan, Julie Heiser, John Haymaker, Jeff Klingner, Pat Hanrahan, and Barbara Tversky. 2003. Designing effective step-by-step assembly instructions. ACM Transactions on Graphics (Proceedings of SIGGRAPH’03) 22, 3 (July 2003), 828--837. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ergun Akleman, Jianer Chen, Qing Xing, and Jonathan L. Gross. 2009. Cyclic plain-weaving on polygonal mesh surfaces with graph rotation systems. ACM Transactions on Graphics 28, 3 (2009), 78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. ACM Transactions on Graphics (1998), 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David Bommes, Timm Lempfer, and Leif Kobbelt. 2011. Global structure optimization of quadrilateral meshes. Computer Graphics Forum 30, 2 (2011), 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  5. Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Transactions on Graphics 21, 3 (2002), 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Marcio Cabral, Sylvain Lefebvre, Carsten Dachsbacher, and George Drettakis. 2009. Structure-preserving reshape for textured architectural scenes. Computer Graphics Forum 28 (2009), 469--480.Google ScholarGoogle ScholarCross RefCross Ref
  7. Michel Carignan, Ying Yang, Nadia Magnenat Thalmann, and Daniel Thalmann. 1992. Dressing animated synthetic actors with complex deformable clothes. ACM Transactions on Graphics (1992), 99--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ka-Fai Choi and Tien-Yu Lo. 2003. An energy model of plain knitted fabric. Textile Research Journal 73, 8 (2003), 739--748.Google ScholarGoogle ScholarCross RefCross Ref
  9. Ka Fai Choi and Tin Yee Lo. 2006. The shape and dimensions of plain knitted fabric: A fabric mechanical model. Textile Research Journal 76, 10 (2006), 777--786.Google ScholarGoogle ScholarCross RefCross Ref
  10. Lillian Chu. 2005. A Framework for Extracting Cloth Descriptors from the Underlying Yarn Structure. University of California, Berkeley.Google ScholarGoogle Scholar
  11. Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A. Otaduy. 2015. Efficient simulation of knitted cloth using persistent contacts. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’15). ACM, New York, NY, 55--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Philippe Decaudin, Dan Julius, Jamie Wither, Laurence Boissieux, Alla Sheffer, and Marie-Paule Cani. 2006. Virtual garments: A fully geometric approach for clothing design. Computer Graphics Forum 25 (2006), 625--634.Google ScholarGoogle ScholarCross RefCross Ref
  13. A. Demiroz and T. Dias. 2000. A study of the graphical representation of plain-knitted structures part I: Stitch model for the graphical representation of plain-knitted structures. Journal of the Textile Institute 91, 4 (2000), 463--480.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Duhovic and D. Bhattacharyya. 2006. Simulating the deformation mechanisms of knitted fabric composites. Composites Part A: Applied Science and Manufacturing 37, 11 (2006), 1897--1915.Google ScholarGoogle ScholarCross RefCross Ref
  15. Bernhard Eberhardt, Michael Meissner, and Wolfgang Strasser. 2000. Knit fabrics. In Cloth Modeling and Animation. A. K. Peters, 123--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. O. Goktepe and S. C. Harlock. 2002. Three-dimensional computer modeling of warp knitted structures. Textile Research Journal 72, 3 (2002), 266--272.Google ScholarGoogle ScholarCross RefCross Ref
  17. Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. 2007. Efficient simulation of inextensible cloth. ACM Transactions on Graphics 26, 3 (2007), 49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete shells. In Proceedings of SCA. 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ankit Gupta, Dieter Fox, Brian Curless, and Michael Cohen. 2012. DuploTrack: A real-time system for authoring and guiding Duplo Block Assembly. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (UIST’12). 389--402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. David J. Heeger and James R. Bergen. 1995. Pyramid-based texture analysis/synthesis. In Proceedings of ACM SIGGGRAPH. ACM, 229--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Emmanuel Iarussi, Wilmot Li, and Adrien Bousseau. 2015. WrapIt: Computer-assisted crafting of wire wrapped jewelry. ACM Transactions on Graphics 34, 6 (Oct. 2015), Article 221, 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Takeo Igarashi and Jun Mitani. 2010. Apparent layer operations for the manipulation of deformable objects. ACM Trans. Graph. 29, 4, Article 110 (July 2010), 7 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Yuki Igarashi, Takeo Igarashi, and Jun Mitani. 2012. Beady: Interactive beadwork design and construction. ACM Transactions on Graphics 31, 4 (July 2012), Article 49, 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008b. Knitting a 3D model. Computer Graphics Forum 27, 7 (2008), 1737--1743.Google ScholarGoogle ScholarCross RefCross Ref
  25. Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008a. Knitty: 3D modeling of knitted animals with a production assistant interface. In Eurographics 2008 - Short Papers, Katerina Mania and Eric Reinhard (Eds.). Eurographics Association.Google ScholarGoogle Scholar
  26. Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Transactions on Graphics 36, 4 (July 2017), Article 152, 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating knitted cloth at the yarn level. ACM Trans. Graph. 27, 3, Article 65 (Aug. 2008), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient yarn-based cloth with adaptive contact linearization. ACM Trans. Graph. 29, 4, Article 105 (July 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Arif Kurbak. 2009. Geometrical models for balanced rib knitted fabrics part I: Conventionally knitted 1× 1 rib fabrics. Textile Research Journal 79, 5 (2009), 418--435.Google ScholarGoogle ScholarCross RefCross Ref
  30. Arif Kurbak and Tuba Alpyildiz. 2008. A geometrical model for the double Lacoste knits. Textile Research Journal 78, 3 (2008), 232--247.Google ScholarGoogle ScholarCross RefCross Ref
  31. Arif Kurbak and Ali Serkan Soydan. 2009. Geometrical models for balanced rib knitted fabrics part III: 2× 2, 3× 3, 4× 4, and 5× 5 rib fabrics. Textile Research Journal 79, 7 (2009), 618--625.Google ScholarGoogle ScholarCross RefCross Ref
  32. Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick. 2003. Graphcut textures: Image and video synthesis using graph cuts. ACM Trans. Graph. 22, 3 (July 2003), 277--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yu-Kun Lai, Miao Jin, Xuexiang Xie, Ying He, Jonathan Palacios, Eugene Zhang, Shi-Min Hu, and Xianfeng Gu. 2010. Metric-driven rosy field design and remeshing. IEEE Transactions on Visualization and Computer Graphics 16, 1 (2010), 95--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yong-Jin Liu, Dong-Liang Zhang, and Matthew Ming-Fai Yuen. 2010. A survey on CAD methods in 3D garment design. Computers in Industry 61, 6 (2010), 576--593. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ze Gang Luo and Matthew Ming-Fai Yuen. 2005. Reactive 2D/3D garment pattern design modification. Computer-Aided Design 37, 6 (2005), 623--630. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jennifer Mankoff, and Jessica Hodgins. 2016. A compiler for 3D machine knitting. ACM Transactions on Graphics 35, 4 (July 2016), Article 49, 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Michael Meißner and Bernd Eberhardt. 1998. The art of knitted fabrics, realistic 8 physically based modelling of knitted patterns. Computer Graphics Forum 17 (1998), 355--362.Google ScholarGoogle ScholarCross RefCross Ref
  38. Eder Miguel, Mathias Lepoutre, and Bernd Bickel. 2016. Computational design of stable planar-rod structures. ACM Transactions on Graphics 35, 4 (July 2016), Article 86, 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yuki Mori and Takeo Igarashi. 2007. Plushie: An interactive design system for plush toys. ACM Trans. Graph. 26, 3, Article 45 (July 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and Jim McCann. 2018. Automatic machine knitting of 3D meshes. ACM Trans. Graph. 37, 3, Article 35 (Aug. 2018), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Olivier Nocent, Jean-Michel Nourrit, and Yannick Remion. 2001. Towards mechanical level of detail for knitwear simulation. In WSCG. 252--259.Google ScholarGoogle Scholar
  42. M. Popescu, M. Rippmann, T. Van Mele, and P. Block. 2017. Automated generation of knit patterns for non-developable surfaces. In Humanizing Digital Reality - Proceedings of the Design Modelling Symposium 2017, K. De Rycke et al. (Eds.). 271--284.Google ScholarGoogle Scholar
  43. Wilfried Renkens and Yordan Kyosev. 2011. Geometry modelling of warp knitted fabrics with 3D form. Textile Research Journal 81, 4 (2011), 437--443.Google ScholarGoogle ScholarCross RefCross Ref
  44. Cody Robson, Ron Maharik, Alla Sheffer, and Nathan Carr. 2011. Context-aware garment modeling from sketches. Computers 8 Graphics 35, 3 (2011), 604--613. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Shima Seiki. 2011. Sds-one apex3. Retrieved from http://www.shimaseiki.com/product/design/sdsone_apex/flat/Google ScholarGoogle Scholar
  46. Soft Byte Ltd. 1999. Designaknit. Retrieved from http://softbyte.co.uk/designaknit.htm.Google ScholarGoogle Scholar
  47. Stoll. 2011. M1plus pattern software. Retrieved from http://www.stoll.com/stoll_software_solutions_en_4/patternsoftware_m1plus/3_1.Google ScholarGoogle Scholar
  48. Emmanuel Turquin, Jamie Wither, Laurence Boissieux, Marie-Paule Cani, and John F. Hughes. 2007. A sketch-based interface for clothing virtual characters. IEEE Computer Graphics and Applications 27, 1 (2007), 72--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun. 2011. Sensitive couture for interactive garment modeling and editing. ACM Transactions on Graphics 30, 4 (2011), 90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik. 2013. OpenFab: A programmable pipeline for multi-material fabrication. ACM Transactions on Graphics 32, 4 (2013), 136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Pascal Volino and Nadia Magnenat-Thalmann. 2005. Accurate garment prototyping and simulation. Computer-Aided Design and Applications 2, 5 (2005), 645--654.Google ScholarGoogle ScholarCross RefCross Ref
  52. Pascal Volino and Nadia Magnenat-Thalmann. 2012. Virtual clothing: Theory and practice. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  53. Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28, 4, Article 105 (Sept. 2009), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. 2018. Stitch meshing. ACM Trans. Graph. 37, 4, Article 130 (July 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Kui Wu and Cem Yuksel. 2017a. Real-time cloth rendering with fiber-level detail. IEEE Transactions on Visualization and Computer Graphics 99 (2017), 12.Google ScholarGoogle Scholar
  56. Kui Wu and Cem Yuksel. 2017b. Real-time fiber-level cloth rendering. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D’17). ACM, 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch meshes for modeling knitted clothing with yarn-level detail. ACM Transactions on Graphics 31, 3 (2012), Article 37, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Kun Zhou, Xin Huang, Xi Wang, Yiying Tong, Mathieu Desbrun, Baining Guo, and Heung-Yeung Shum. 2006. Mesh quilting for geometric texture synthesis. ACM Transactions on Graphics 25, 3 (July 2006), 690--697. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Knittable Stitch Meshes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 38, Issue 1
        February 2019
        176 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3300145
        Issue’s Table of Contents

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 January 2019
        • Accepted: 1 November 2018
        • Revised: 1 October 2018
        • Received: 1 May 2018
        Published in tog Volume 38, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format