skip to main content
research-article

Progressive Color Transfer With Dense Semantic Correspondences

Published:05 April 2019Publication History
Skip Abstract Section

Abstract

We propose a new algorithm for color transfer between images that have perceptually similar semantic structures. We aim to achieve a more accurate color transfer that leverages semantically meaningful dense correspondence between images. To accomplish this, our algorithm uses neural representations for matching. Additionally, the color transfer should be spatially variant and globally coherent. Therefore, our algorithm optimizes a local linear model for color transfer satisfying both local and global constraints. Our proposed approach jointly optimizes matching and color transfer, adopting a coarse-to-fine strategy. The proposed method can be successfully extended from one-to-one to one-to-many color transfer. The latter further addresses the problem of mismatching elements of the input image. We validate our proposed method by testing it on a large variety of image content.

References

  1. Xiaobo An and Fabio Pellacini. 2008. AppProp: All-pairs appearance-space edit propagation. ACM Transactions on Graphics 27, 3 (2008), Article 40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Xiaobo An and Fabio Pellacini. 2010. User-controllable color transfer. Computer Graphics Forum 29 (2010), 263--271.Google ScholarGoogle ScholarCross RefCross Ref
  3. Benoit Arbelot, Romain Vergne, Thomas Hurtut, and Joëlle Thollot. 2017. Local texture-based color transfer and colorization. Computers and Graphics 62 (2017), 15--27.Google ScholarGoogle ScholarCross RefCross Ref
  4. Soonmin Bae, Sylvain Paris, and Frédo Durand. 2006. Two-scale tone management for photographic look. ACM Transactions on Graphics 25, 3 (2006), 637--645. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan Goldman. 2009. PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics 28, 3 (2009), 24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Connelly Barnes, Eli Shechtman, Dan Goldman, and Adam Finkelstein. 2010. The generalized PatchMatch correspondence algorithm. In Proceedings of the European Conference on Computer Vision (ECCV’10). 29--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Nicolas Bonneel, Gabriel Peyré, and Marco Cuturi. 2016. Wasserstein barycentric coordinates: Histogram regression using optimal transport. ACM Transactions on Graphics 35, 4 (2016), Article 71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dongdong Chen, Jing Liao, Lu Yuan, Nenghai Yu, and Gang Hua. 2017a. Coherent online video style transfer. In Proceedings of the International Conference on Computer Vision (ICCV’17).Google ScholarGoogle ScholarCross RefCross Ref
  9. Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang Hua. 2017b. StyleBank: An explicit representation for neural image style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17), Vol. 1. 4.Google ScholarGoogle ScholarCross RefCross Ref
  10. Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang Hua. 2018b. Stereoscopic neural style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), Vol. 10.Google ScholarGoogle ScholarCross RefCross Ref
  11. Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. 2018a. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence 40, 4 (2018), 834--848.Google ScholarGoogle ScholarCross RefCross Ref
  12. Xiaowu Chen, Dongqing Zou, Steven Zhiying Zhou, Qinping Zhao, and Ping Tan. 2013. Image matting with local and nonlocal smooth priors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’13). 1902--1907. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kevin Dale, Micah K. Johnson, Kalyan Sunkavalli, Wojciech Matusik, and Hanspeter Pfister. 2009. Image restoration using online photo collections. In Proceedings of the 2009 IEEE International Conference on Computer Vision (ICCV’09). IEEE, Los Alamitos, CA, 2217--2224.Google ScholarGoogle ScholarCross RefCross Ref
  14. Yuki Endo, Satoshi Iizuka, Yoshihiro Kanamori, and Jun Mitani. 2016. DeepProp: Extracting deep features from a single image for edit propagation. Computer Graphics Forum 35, 2 (2016), 189--201.Google ScholarGoogle ScholarCross RefCross Ref
  15. Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. 2008. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics 27, 3 (2008), Article 67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Daniel Freedman and Pavel Kisilev. 2010. Object-to-object color transfer: Optimal flows and SMSP transformations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’10). IEEE, Los Alamitos, CA, 287--294.Google ScholarGoogle ScholarCross RefCross Ref
  17. Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2015. A neural algorithm of artistic style. arXiv:1508.06576.Google ScholarGoogle Scholar
  18. Yoav HaCohen, Eli Shechtman, Dan B. Goldman, and Dani Lischinski. 2011. Non-rigid dense correspondence with applications for image enhancement. ACM Transactions on Graphics 30, 4 (2011), 70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Mingming He, Dongdong Chen, Jing Liao, Pedro V. Sander, and Lu Yuan. 2018. Deep exemplar-based colorization. ACM Transactions on Graphics 37, 4 (2018), 110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Salesin. 2001. Image analogies. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, NY, 327--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hristina Hristova, Olivier Le Meur, Rémi Cozot, and Kadi Bouatouch. 2015. Style-aware robust color transfer. In Proceedings of the Workshop on Computational Aesthetics. 67--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2016. Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Transactions on Graphics 35, 4 (2016), 110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-to-image translation with conditional adversarial networks. arXiv:1611.07004.Google ScholarGoogle Scholar
  24. Asad Khan, Luo Jiang, Wei Li, and Ligang Liu. 2017. Fast color transfer from multiple images. Applied Mathematics-A Journal of Chinese Universities 32, 2 (2017), 183--200.Google ScholarGoogle ScholarCross RefCross Ref
  25. Vladimir Kolmogorov and Ramin Zabin. 2004. What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 2 (2004), 147--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, Chao Qian, and James Hays. 2014. Transient attributes for high-level understanding and editing of outdoor scenes. ACM Transactions on Graphics 33, 4 (2014), 149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Joon-Young Lee, Kalyan Sunkavalli, Zhe Lin, Xiaohui Shen, and In So Kweon. 2016. Automatic content-aware color and tone stylization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16). 2470--2478.Google ScholarGoogle ScholarCross RefCross Ref
  28. Anat Levin, Dani Lischinski, and Yair Weiss. 2004. Colorization using optimization. ACM Transactions on Graphics 23, 3 (2004), 689--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Anat Levin, Dani Lischinski, and Yair Weiss. 2008. A closed-form solution to natural image matting. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 2 (2008), 228--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Chuan Li and Michael Wand. 2016. Combining Markov random fields and convolutional neural networks for image synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16). 2479--2486.Google ScholarGoogle ScholarCross RefCross Ref
  31. Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing Kang. 2017. Visual attribute transfer through deep image analogy. ACM Transactions on Graphics 36, 4 (2017), Article 120, 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Dani Lischinski, Zeev Farbman, Matt Uyttendaele, and Richard Szeliski. 2006. Interactive local adjustment of tonal values. ACM Transactions on Graphics 25, 3 (2006), 646--653. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yiming Liu, Michael Cohen, Matt Uyttendaele, and Szymon Rusinkiewicz. 2014. AutoStyle: Automatic style transfer from image collections to users’ images. Computer Graphics Forum 33 (2014), 21--31.Google ScholarGoogle ScholarCross RefCross Ref
  34. Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala. 2017. Deep photo style transfer. arXiv:1703.07511.Google ScholarGoogle Scholar
  35. Roey Mechrez, Eli Shechtman, and Lihi Zelnik-Manor. 2017. Photorealistic style transfer with screened Poisson equation. arXiv:1709.09828.Google ScholarGoogle Scholar
  36. Augustus Odena, Vincent Dumoulin, and Chris Olah. 2016. Deconvolution and checkerboard artifacts. Distill. Retrieved March 7, 2019 from http://distill.pub/2016/deconv-checkerboard.Google ScholarGoogle Scholar
  37. Francois Pitie, Anil C. Kokaram, and Rozenn Dahyot. 2005. N-dimensional probability density function transfer and its application to color transfer. In Proceedings of the 2005 IEEE International Conference on Computer Vision (ICCV’05), Vol. 2. IEEE, Los Alamitos, CA, 1434--1439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter Shirley. 2001. Color transfer between images. IEEE Computer Graphics and Applications 21, 5 (2001), 34--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 5500 (2000), 2323--2326.Google ScholarGoogle ScholarCross RefCross Ref
  40. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, et al. 2015. ImageNet large scale visual recognition challenge. International Journal of Computer Vision 115, 3 (2015), 211--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Xiaoyong Shen, Xin Tao, Chao Zhou, Hongyun Gao, and Jiaya Jia. 2016. Regional foremost matching for Internet scene images. ACM Transactions on Graphics 35, 6 (2016), 178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. YiChang Shih, Sylvain Paris, Connelly Barnes, William T. Freeman, and Frédo Durand. 2014. Style transfer for headshot portraits. ACM Transactions on Graphics 33, 4 (2014), Article 148, 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. YiChang Shih, Sylvain Paris, Frédo Durand, and William T. Freeman. 2013. Data-driven hallucination of different times of day from a single outdoor photo. ACM Transactions on Graphics 32, 6 (2013), Article 200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal Irani. 2008. Summarizing visual data using bidirectional similarity. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08). IEEE, Los Alamitos, CA, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  45. Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.Google ScholarGoogle Scholar
  46. Kalyan Sunkavalli, Micah K. Johnson, Wojciech Matusik, and Hanspeter Pfister. 2010. Multi-scale image harmonization. ACM Transactions on Graphics 29, 4 (2010), Article 125, 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. 2005. Local color transfer via probabilistic segmentation by expectation-maximization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1. IEEE, Los Alamitos, CA, 747--754. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wai-Shun Tong, Chi-Keung Tang, Michael S. Brown, and Ying-Qing Xu. 2007. Example-based cosmetic transfer. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications (PG’07). IEEE, Los Alamitos, CA, 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller. 2002. Transferring color to greyscale images. ACM Transactions on Graphics 21, 3 (2002), 277--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Zhicheng Yan, Hao Zhang, Baoyuan Wang, Sylvain Paris, and Yizhou Yu. 2016. Automatic photo adjustment using deep neural networks. ACM Transactions on Graphics 35, 2 (2016), 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Jae-Doug Yoo, Min-Ki Park, Ji-Ho Cho, and Kwan H. Lee. 2013. Local color transfer between images using dominant colors. Journal of Electronic Imaging 22, 3 (2013), 033003.Google ScholarGoogle ScholarCross RefCross Ref
  52. Richard Zhang, Phillip Isola, and Alexei A. Efros. 2016. Colorful image colorization. In Proceedings of the European Conference on Computer Vision (ECCV’16). 649--666.Google ScholarGoogle Scholar
  53. Qi Zhao, Ping Tan, Qiang Dai, Li Shen, Enhua Wu, and Stephen Lin. 2012. A closed-form solution to retinex with nonlocal texture constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 7 (2012), 1437--1444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv:1703.10593.Google ScholarGoogle Scholar

Index Terms

  1. Progressive Color Transfer With Dense Semantic Correspondences

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 2
      April 2019
      112 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3313807
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 April 2019
      • Accepted: 1 November 2018
      • Revised: 1 June 2018
      • Received: 1 October 2017
      Published in tog Volume 38, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format