skip to main content
research-article
Public Access

Efficient and conservative fluids using bidirectional mapping

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

In this paper, we introduce BiMocq2, an unconditionally stable, pure Eulerianbased advection scheme to efficiently preserve the advection accuracy of all physical quantities for long-term fluid simulations. Our approach is built upon the method of characteristic mapping (MCM). Instead of the costly evaluation of the temporal characteristic integral, we evolve the mapping function itself by solving an advection equation for the mappings. Dual mesh characteristics (DMC) method is adopted to more accurately update the mapping. Furthermore, to avoid visual artifacts like instant blur and temporal inconsistency introduced by re-initialization, we introduce multi-level mapping and back and forth error compensation. We conduct comprehensive 2D and 3D benchmark experiments to compare against alternative advection schemes. In particular, for the vortical flow and level set experiments, our method outperforms almost all state-of-art hybrid schemes, including FLIP, PolyPic and Particle-Level-Set, at the cost of only two Semi-Lagrangian advections. Additionally, our method does not rely on the particle-grid transfer operations, leading to a highly parallelizable pipeline. As a result, more than 45× performance acceleration can be achieved via even a straightforward porting of the code from CPU to GPU.

Skip Supplemental Material Section

Supplemental Material

papers_157.mp4

References

  1. Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios Sifakis. 2017. Power diagrams and sparse paged grids for high resolution adaptive liquids. ACM Transactions on Graphics (TOG) 36, 4 (2017), 140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ryoichi Ando, Nils Thuerey, and Chris Wojtan. 2015. A stream function solver for liquid simulations. ACM Transactions on Graphics (TOG) 34, 4 (2015), 53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Alexis Angelidis. 2017. Multi-scale Vorticle Fluids. ACM Trans. Graph. 36, 4, Article 104 (July 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Bridson. 2008. Fluid Simulation for Computer Graphics. Taylor & Francis.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 87--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chung-Ki Cho, Byungjoon Lee, and Seongjai Kim. 2018. Dual-Mesh Characteristics for Particle-Mesh Methods for the Simulation of Convection-Dominated Flows. SIAM Journal on Scientific Computing 40, 3 (2018), A1763--A1783.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Georges-Henri Cottet, Petros D Koumoutsakos, D Petros, et al. 2000. Vortex methods: theory and practice. Cambridge university press.Google ScholarGoogle Scholar
  8. Roger A Crawfis and Nelson Max. 1993. Texture splats for 3D scalar and vector field visualization. In Proceedings of the 4th conference on Visualization'93. IEEE Computer Society, 261--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Elcott, Y. Tong, E. Kanso, P. Schröder, and M. Desbrun. 2007. Stable, Circulation-preserving, Simplicial Fluids. ACM Trans. Graph. 26, 1, Article 4 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. 2002a. A hybrid particle level set method for improved interface capturing. Journal of Computational physics 183, 1 (2002), 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Douglas Enright, Stephen Marschner, and Ronald Fedkiw. 2002b. Animation and rendering of complex water surfaces. In ACM Trans. Graph., Vol. 21. 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ye Fan, Joshua Litven, David IW Levin, and Dinesh K Pai. 2013. Eulerian-on-lagrangian simulation. ACM Transactions on Graphics (TOG) 32, 3 (2013), 22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual Simulation of Smoke. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). ACM, New York, NY, USA, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Bryan E Feldman, James F O'brien, and Okan Arikan. 2003. Animating suspended particle explosions. In ACM Transactions on Graphics (TOG), Vol. 22. ACM, 708--715. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey. 2016. Narrow band FLIP for liquid simulations. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 225--232.Google ScholarGoogle Scholar
  16. Nick Foster and Ronald Fedkiw. 2001. Practical Animation of Liquids. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). ACM, New York, NY, USA, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran. 2017. A Polynomial Particle-in-cell Method. ACM Trans. Graph. 36, 6, Article 222 (2017), 222:1--222:12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Gao. 2018. Sparse Paged Grid and its Applications to Adaptivity and Material Point Method in Physics Based Simulations. Ph.D. Dissertation. University of Wisconsin, Madison.Google ScholarGoogle Scholar
  19. Ming Gao, Andre Pradhana Tampubolon, Chenfanfu Jiang, and Eftychios Sifakis. 2017. An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials. ACM Trans. Graph. 36, 6, Article 223 (Nov. 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang. 2018. GPU Optimization of Material Point Methods. In SIGGRAPH Asia 2018 Technical Papers (SIGGRAPH Asia '18). ACM, New York, NY, USA, Article 254, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The Affine Particle-in-cell Method. ACM Trans. Graph. 34, 4 (July 2015), 51:1--51:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. B. Kim, Y. Liu, I. Llamas, and J. Rossignac. 2005. FlowFixer: Using BFECC for Fluid Simulation. In Eurographics Conference on Natural Phenomena. 51--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet Turbulence for Fluid Simulation. In ACM SIGGRAPH 2008 Papers (SIGGRAPH '08). ACM, New York, NY, USA, Article 50, 6 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. David I. W. Levin, Joshua Litven, Garrett L. Jones, Shinjiro Sueda, and Dinesh K. Pai. 2011. Eulerian Solid Simulation with Contact. In ACM SIGGRAPH 2011 Papers (SIGGRAPH '11). Article 36, 36:1--36:10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. T. Lim and T. B. Nickels. 1992. Instability and reconnection in the head-on collision of two vortex rings. Nature 357 (05 1992), 225--227.Google ScholarGoogle Scholar
  26. Nelson Max, Roger Crawfis, and Dean Williams. 1992. Visualizing wind velocities by advecting cloud textures. In Proceedings Visualization'92. IEEE, 179--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. McKenzie. 2007. HOLA: a High-Order Lie Advection of discrete differential forms, with applications in fluid dynamics. Ph.D. Dissertation. Caltech.Google ScholarGoogle Scholar
  28. Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun. 2009. Energy-preserving Integrators for Fluid Animation. In ACM SIGGRAPH 2009 Papers (SIGGRAPH '09). Article 38, 38:1--38:8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ken Museth. 2013. VDB: High-resolution Sparse Volumes with Dynamic Topology. ACM Trans. Graph. 32, 3, Article 27 (July 2013), 22 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen. 2002. Physically Based Modeling and Animation of Fire. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. 721--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian Vortex Sheets for Animating Fluids. ACM Trans. Graph. 31, 4, Article 112 (2012), 112:1--112:8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. N. Rasmussen, D. Nguyen, W. Geiger, and R. Fedkiw. 2003. Smoke simulation for large scale phenomena. In ACM Trans Graph, Vol. 22. ACM, 703--707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Takahiro Sato, Christopher Batty, Takeo Igarashi, and Ryoichi Ando. 2017. A Long-term Semi-lagrangian Method for Accurate Velocity Advection. In SIGGRAPH Asia 2017 Technical Briefs (SA '17). ACM, New York, NY, USA, Article 5, 4 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008. An unconditionally stable MacCormack method. Journal of Scientific Computing 35, 2--3 (2008), 350--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid: A Sparse Paged Grid Structure Applied to Adaptive Smoke Simulation. ACM Trans. Graph. 33, 6, Article 205 (Nov. 2014), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Karl Sims. 1992. Choreographed image flow. The Journal Of Visualization And Computer Animation 3, 1 (1992), 31--43.Google ScholarGoogle ScholarCross RefCross Ref
  37. Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Jos Stam and Eugene Fiume. 1995. Depicting fire and other gaseous phenomena using diffusion processes. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, 129--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yun Teng, David I. W. Levin, and Theodore Kim. 2016. Eulerian Solid-fluid Coupling. ACM Trans. Graph. 35, 6, Article 200 (2016), 200:1--200:8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Jerry Tessendorf. 2015. Advection Solver Performance with Long Time Steps, and Strategies for Fast and Accurate Numerical Implementation.Google ScholarGoogle Scholar
  41. Jerry Tessendorf and Brandon Pelfrey. 2011. The characteristic map for fast and efficient vfx fluid simulations. In Computer Graphics International Workshop on VFX, Computer Animation, and Stereo Movies. Ottawa, Canada.Google ScholarGoogle Scholar
  42. Steffen Weißmann and Ulrich Pinkall. 2010. Filament-based smoke with vortex shedding and variational reconnection. In ACM Trans. Graph., Vol. 29. 115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. D. C. Wiggert and E. B. Wylie. 1976. Numerical predictions of two-dimensional transient groundwater flow by the method of characteristics. Water Resources Research 12, 5 (1976), 971--977.Google ScholarGoogle ScholarCross RefCross Ref
  44. You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. 2018. tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow. ACM Trans. Graph. 37, 4, Article 95 (July 2018), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. 2018. An Advection-reflection Solver for Detail-preserving Fluid Simulation. ACM Trans. Graph. 37, 4, Article 85 (July 2018), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Xinxin Zhang, Robert Bridson, and Chen Greif. 2015. Restoring the Missing Vorticity in Advection-projection Fluid Solvers. ACM Trans. Graph. 34, 4, Article 52 (2015), 52:1--52:8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Yongning Zhu and Robert Bridson. 2005. Animating Sand As a Fluid. In ACM SIGGRAPH 2005 Papers (SIGGRAPH '05). ACM, New York, NY, USA, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Efficient and conservative fluids using bidirectional mapping

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 38, Issue 4
        August 2019
        1480 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3306346
        Issue’s Table of Contents

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 July 2019
        Published in tog Volume 38, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader