Abstract
We present two new approaches for animating dynamic fracture involving large elastoplastic deformation. In contrast to traditional mesh-based techniques, where sharp discontinuity is introduced to split the continuum at crack surfaces, our methods are based on Continuum Damage Mechanics (CDM) with a variational energy-based formulation for crack evolution. Our first approach formulates the resulting dynamic material damage evolution with a Ginzburg-Landau type phase-field equation and discretizes it with the Material Point Method (MPM), resulting in a coupled momentum/damage solver rooted in phase field fracture: PFF-MPM. Although our PFF-MPM approach achieves convincing fracture with or without plasticity, we also introduce a return mapping algorithm that can be analytically solved for a wide range of general non-associated plasticity models, achieving more than two times speedup over traditional iterative approaches. To demonstrate the efficacy of the algorithm, we also develop a Non-Associated Cam-Clay (NACC) plasticity model with a novel fracture-friendly hardening scheme. Our NACC plasticity paired with traditional MPM composes a second approach to dynamic fracture, as it produces a breadth of organic, brittle material fracture effects on its own. Though NACC and PFF can be combined, we focus on exploring their material effects separately. Both methods can be easily integrated into any existing MPM solver, enabling the simulation of various fracturing materials with extremely high visual fidelity while requiring little additional computational overhead.
Supplemental Material
- S. M. Allen and J. W. Cahn. 1972. Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metallurgica 20, 3 (1972), 423--433.Google Scholar
Cross Ref
- M. Ambati, R. Kruse, and L. De Lorenzis. 2016. A phase-field model for ductile fracture at finite strains and its experimental verification. Comp. Mech. 57, 1 (2016), 149--167. Google Scholar
Digital Library
- H. Amor, J.-J. Marigo, and C. Maurini. 2009. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J. of the Mech. and Phys. of Solids 57, 8 (2009), 1209--1229.Google Scholar
Cross Ref
- K. Aoki, N. H. Dong, T. Kaneko, and S. Kuriyama. 2004. Physically Based Simulation of Cracks on Drying 3D Solids. In Proc. of the Comp. Graph. Int. 357--364. Google Scholar
Digital Library
- I. S. Aranson, V. A. Kalatsky, and V. M. Vinokur. 2000. Continuum field description of crack propagation. Physical Review Letters 85, 1 (2000), 118--121.Google Scholar
Cross Ref
- Z. Bao, J. M. Hong, J. Teran, and R. Fedkiw. 2007. Fracturing Rigid Materials. IEEE Trans. on Vis. and Comp. Graph. 13, 2 (2007), 370--378. Google Scholar
Digital Library
- G. I. Barenblatt. 1962. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Applied Mechanics, Vol. 7. 55 -- 129.Google Scholar
Cross Ref
- T. Belytschko and T. Black. 1999. Elastic crack growth in finite elements with minimal remeshing. Int. J. for Num. Meth. in Eng. 45, 5 (1999), 601--620.Google Scholar
Cross Ref
- T. Belytschko, D. Organ, and Y. Krongauz. 1995. A coupled finite element-element-free Galerkin method. Comp. Mech. 17, 3 (1995), 186--195.Google Scholar
Cross Ref
- H. Bhatacharya, Y. Gao, and A. Bargteil. 2011. A Level-set Method for Skinning Animated Particle Data. In Symp. Comp. Anim. 17--24. Google Scholar
Digital Library
- M. J. Borden, T. J.R. Hughes, C. M. Landis, A. Anvari, and I. J. Lee. 2016. A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comp. Meth. in Applied Mech. and Eng. 312 (2016), 130--166.Google Scholar
Cross Ref
- M. J. Borden, C. V. Verhoosel, M. A. Scott, T. JR. Hughes, and C. M. Landis. 2012. A phase-field description of dynamic brittle fracture. Comp. Meth. in Applied Mech. and Eng. 217 (2012), 77--95.Google Scholar
Cross Ref
- S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4 (2014), 154:1--154:11. Google Scholar
Digital Library
- B. Bourdin, G. A. Francfort, and J-J. Marigo. 2000. Numerical experiments in revisited brittle fracture. J. of the Mech. and Phys. of Solids 48, 4 (2000), 797 -- 826.Google Scholar
Cross Ref
- B. Bourdin, G. A. Francfort, and J.-J. Marigo. 2008. The variational approach to fracture. Journal of elasticity 91, 1--3 (2008), 5--148.Google Scholar
Cross Ref
- J. Brackbill and H. Ruppel. 1986. FLIP: A method for adaptively zoned, Particle-In-Cell calculations of fluid flows in two dimensions. J Comp Phys 65 (1986), 314--343. Google Scholar
Digital Library
- O. Busaryev, T. K. Dey, and H. Wang. 2013. Adaptive Fracture Simulation of Multi-layered Thin Plates. ACM Trans. Graph. 32, 4, Article 52 (2013), 6 pages. Google Scholar
Digital Library
- J. W. Cahn and J. E. Hilliard. 1958. Free energy of a nonuniform system. I. interfacial free energy. The Journal of Chemical Physics 28, 2 (1958), 258--267.Google Scholar
Cross Ref
- M. Cervera and M. Chiumenti. 2006. Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique. Comp. Meth. in Applied Mech. and Eng. 196, 1--3 (2006), 304--320.Google Scholar
Cross Ref
- F. Chen, C. Wang, B. Xie, and H. Qin. 2013. Flexible and rapid animation of brittle fracture using the smoothed particle hydrodynamics formulation. Computer Animation and Virtual Worlds 24, 3--4 (2013), 215--224.Google Scholar
Cross Ref
- Z. Chen, M. Yao, R. Feng, and H. Wang. 2014. Physics-inspired Adaptive Fracture Refinement. ACM Trans. Graph. 33, 4, Article 113 (2014), 7 pages. Google Scholar
Digital Library
- J. Choo and W. C. Sun. 2018. Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow. Comp. Meth. in Applied Mech. and Eng. 330 (2018), 1--32.Google Scholar
Cross Ref
- F. Da, C. Batty, and E. Grinspun. 2014. Multimaterial Mesh-based Surface Tracking. ACM Trans. Graph. 33, 4, Article 112 (2014), 11 pages. Google Scholar
Digital Library
- F. Da, D. Hahn, C. Batty, C. Wojtan, and E. Grinspun. 2016. Surface-only Liquids. ACM Trans. Graph. 35, 4, Article 78 (2016), 12 pages. Google Scholar
Digital Library
- G. Daviet and F. Bertails-Descoubes. 2016. A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans. Graph. 35, 4 (2016). Google Scholar
Digital Library
- Y. (R.) Fei, C. Batty, E. Grinspun, and C. Zheng. 2018. A Multi-scale Model for Simulating Liquid-fabric Interactions. ACM Trans. Graph. 37, 4 (2018), 51:1--51:16. Google Scholar
Digital Library
- G. A. Francfort and J.-J. Marigo. 1998. Revisiting brittle fracture as an energy minimization problem. J. of the Mech. and Phys. of Solids 46, 8 (1998), 1319--1342.Google Scholar
Cross Ref
- M. Gao, A. Pradhana, X. Han, Q. Guo, G. Kot, E. Sifakis, and C. Jiang. 2018a. Animating fluid sediment mixture in particle-laden flows. ACM Trans. Graph. 37, 4 (2018), 149. Google Scholar
Digital Library
- M. Gao, X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, and C. Jiang. 2018b. GPU Optimization of Material Point Methods. ACM Trans. Graph. 37, 6, Article 254 (2018), 12 pages. Google Scholar
Digital Library
- J. Gaume, T. Gast, J. Teran, A. van Herwijnen, and C. Jiang. 2018. Dynamic anticrack propagation in snow. Nature communications 9, 1 (2018), 3047.Google Scholar
- L. Glondu, M. Marchal, and G. Dumont. 2013. Real-Time Simulation of Brittle Fracture Using Modal Analysis. IEEE Trans. on Vis. and Comp. Graph. 19, 2 (2013), 201--209. Google Scholar
Digital Library
- L. Glondu, S. C. Schvartzman, M. Marchal, G. Dumont, and M. A. Otaduy. 2014. Fast Collision Detection for Fracturing Rigid Bodies. IEEE Trans. on Vis. and Comp. Graph. 20, 1 (2014), 30--41. Google Scholar
Digital Library
- P. Grassl and M. Jirásek. 2004. On mesh bias of local damage models for concrete. (2004).Google Scholar
- A. A. Griffith and M. Eng. 1921. VI. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 582--593 (1921), 163--198.Google Scholar
Cross Ref
- Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran. 2018. A material point method for thin shells with frictional contact. ACM Trans. Graph. 37, 4 (2018), 147. Google Scholar
Digital Library
- D. Hahn and C. Wojtan. 2015. High-resolution brittle fracture simulation with boundary elements. ACM Trans. Graph. 34, 4, Article 151 (2015), 12 pages. Google Scholar
Digital Library
- D. Hahn and C. Wojtan. 2016. Fast approximations for boundary element based brittle fracture simulation. ACM Trans. Graph. 35, 4, Article 104 (2016), 11 pages. Google Scholar
Digital Library
- X. He, H. Wang, and E. Wu. 2018. Projective peridynamics for modeling versatile elastoplastic materials. IEEE Trans. on Vis. and Comp. Graph. 24, 9 (2018), 2589--2599.Google Scholar
Cross Ref
- X. He, H. Wang, F. Zhang, H. Wang, G. Wang, K. Zhou, and E. Wu. 2015. Simulation of fluid mixing with interface control. In Symp. Comp. Anim. 129--135. Google Scholar
Digital Library
- J. Hegemann, C. Jiang, C. Schroeder, and J. Teran. 2013. A level set method for ductile fracture. In Proc ACM SIGGRAPH/Eurograp Symp Comp Anim. 193--201. Google Scholar
Digital Library
- K. Hirota, Y. Tanoue, and T. Kaneko. 1998. Generation of crack patterns with a physical model. The Visual Computer 14, 3 (1998), 126--137.Google Scholar
Cross Ref
- K. Hirota, Y. Tanoue, and T. Kaneko. 2000. Simulation of three-dimensional cracks. The Visual Computer 16, 7 (2000), 371--378.Google Scholar
Cross Ref
- M. A. Homel and E. B. Herbold. 2017. Field-gradient partitioning for fracture and frictional contact in the material point method. Int. J. for Num. Meth. in Eng. 109, 7 (2017), 1013--1044.Google Scholar
Cross Ref
- Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans. Graph. 37, 4 (2018), 150. Google Scholar
Digital Library
- G. R. Irwin. 1957. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J. Appl. Mech. (1957).Google Scholar
- D. L. James and D. K. Pai. 1999. ArtDefo: Accurate real time deformable objects. In Proc. of the 26th Ann. Conf. on Comp. Graph. and Inter. Tech. 65--72. Google Scholar
Digital Library
- C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans. Graph. 36, 4 (2017). Google Scholar
Digital Library
- C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-cell method. ACM Trans. Graph. 34, 4 (2015), 51:1--51:10. Google Scholar
Digital Library
- C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. 2016. The material point method for simulating continuum materials. In SIGGRAPH Course. 24:1--24:52. Google Scholar
Digital Library
- B. Jones, A. Martin, J. A. Levine, T. Shinar, and A. W. Bargteil. 2016. Ductile Fracture for Clustered Shape Matching. Proc. of the ACM SIGGRAPH symp. on Int. 3D graph. and games (2016). Google Scholar
Digital Library
- L. M. Kachanov. 1999. Rupture Time Under Creep Conditions. Int. J. of Fracture 97, 1 (1999), 11--18.Google Scholar
Cross Ref
- P. Kaufmann, S. Martin, M. Botsch, and M. Gross. 2008. Flexible simulation of deformable models using discontinuous Galerkin FEM. In Symp. Comp. Anim. 105--116. Google Scholar
Digital Library
- T. Kim, M. Henson, and M. C. Lin. 2004. A hybrid algorithm for modeling ice formation. In Symp. Comp. Anim. 305--314. Google Scholar
Digital Library
- G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager elastoplasticity for sand animation. ACM Trans. Graph. 35, 4 (2016), 103:1--103:12. Google Scholar
Digital Library
- D. Koschier, J. Bender, and N. Thuerey. 2017. Robust eXtended finite elements for complex cutting of deformables. ACM Trans. Graph. 36, 4, Article 55 (2017), 13 pages. Google Scholar
Digital Library
- L. D. Landau and E. M. Lifshitz. 1971. The classical theory of fields. (1971).Google Scholar
- J. A. Levine, A. W. Bargteil, C. Corsi, J. Tessendorf, and R. Geist. 2014. A peridynamic perspective on spring-mass fracture. In Symp. Comp. Anim. 47--55. Google Scholar
Digital Library
- X. Li, S. Andrews, B. Jones, and A. Bargteil. 2018. Energized rigid body fracture. Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article 9 (2018), 9 pages. Google Scholar
Digital Library
- N. Liu, X. He, S. Li, and G. Wang. 2011. Meshless Simulation of Brittle Fracture. Comput. Animat. Virtual Worlds 22, 2--3 (2011), 115--124. Google Scholar
Digital Library
- T. Liu, A. Bargteil, J. O'Brien, and L. Kavan. 2013. Fast Simulation of Mass-Spring Systems. ACM Trans. Graph. 32, 6 (2013), 209:1--7. Google Scholar
Digital Library
- T. Liu, S. Bouaziz, and L. Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 3, Article 116a (2017). Google Scholar
Digital Library
- Y. Y. Lu, T. Belytschko, and M. Tabbara. 1995. Element-free Galerkin method for wave propagation and dynamic fracture. Comp. Meth. in Applied Mech. and Eng. 126, 1 (1995), 131 -- 153.Google Scholar
Cross Ref
- C. Miehe, M. Hofacker, and F. Welschinger. 2010a. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comp. Meth. in Applied Mech. and Eng. 199, 45--48 (2010), 2765--2778.Google Scholar
Cross Ref
- C. Miehe, L. M. Schänzel, and H. Ulmer. 2015. Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comp. Meth. in Applied Mech. and Eng. 294 (2015), 449 -- 485.Google Scholar
Cross Ref
- C. Miehe, F. Welschinger, and M. Hofacker. 2010b. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int. J. for Num. Meth. in Eng. 83, 10 (2010), 1273--1311.Google Scholar
Cross Ref
- N. Mitchell, M. Aanjaneya, R. Setaluri, and E. Sifakis. 2015. Non-manifold level sets: A multivalued implicit surface representation with applications to self-collision processing. ACM Trans. Graph. 34, 6 (2015), 247. Google Scholar
Digital Library
- N. Moës, J. Dolbow, and T. Belytschko. 1999. A finite element method for crack growth without remeshing. Int. J. for Num. Meth. in Eng. 46, 1 (1999), 131--150.Google Scholar
Cross Ref
- N. Molino, Z. Bao, and R. Fedkiw. 2005. A Virtual Node Algorithm for Changing Mesh Topology During Simulation. In ACM SIGGRAPH 2005 Courses. Article 4. Google Scholar
Digital Library
- D. Mould. 2005. Image-guided Fracture. In Proc. of Graphics Interface 2005. 219--226. Google Scholar
Digital Library
- M. Müller and M. Gross. 2004. Interactive Virtual Materials. In Proc. of Graphics Interface 2004. 239--246. Google Scholar
Digital Library
- M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point Based Animation of Elastic, Plastic and Melting Objects. In Symp. Comp. Anim. 141--151. Google Scholar
Digital Library
- Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai Alden, Peter Cucka, David Hill, and Andrew Pearce. 2013. OpenVDB: an open-source data structure and toolkit for high-resolution volumes. In Acm siggraph 2013 courses. 19. Google Scholar
Digital Library
- J. A. Nairn. 2003. Material point method calculations with explicit cracks. Comp. Mod. in Eng. And Sci. 4 (2003), 649--663.Google Scholar
- R. Narain, M. Overby, and G. E. Brown. 2016. ADMM ⊇ Projective Dynamics: Fast Simulation of General Constitutive Models. In Symp Comp Anim. 21--28. Google Scholar
Digital Library
- M. Neff and E. Fiume. 1999. A Visual Model for Blast Waves and Fracture. In Proc. of the 1999 Conference on Graphics Interface '99. 193--202. Google Scholar
Digital Library
- D. Ngo and A. C. Scordelis. 1967. Finite Element Analysis of Reinforced Concrete Beams. Journal Proceedings 64. Issue 3.Google Scholar
- J. Ning, H. Xu, B. Wu, L. Zeng, S. Li, and Y. Xiong. 2013. Modeling and animation of fracture of heterogeneous materials based on CUDA. The Visual Computer 29, 4 (2013), 265--275. Google Scholar
Digital Library
- A. Norton, G. Turk, B. Bacon, J. Gerth, and P. Sweeney. 1991. Animation of fracture by physical modeling. The Visual Computer 7, 4 (1991), 210--219. Google Scholar
Digital Library
- J. F. O'Brien, A. W. Bargteil, and J. K. Hodgins. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3 (2002), 291--294. Google Scholar
Digital Library
- J. F. O'Brien and J. K. Hodgins. 1999. Graphical Modeling and Animation of Brittle Fracture. In Proc. of the 26th Ann. Conf. on Comp. Graph. and Inter. Tech. 137--146. Google Scholar
Digital Library
- M. Pauly, R. Keiser, B. Adams, P. Dutré, M. Gross, and L. J Guibas. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3 (2005), 957--964. Google Scholar
Digital Library
- T. Pfaff, R. Narain, J. M. de Joya, and J. F. O'Brien. 2014. Adaptive Tearing and Cracking of Thin Sheets. ACM Trans. Graph. 33, 4, Article 110 (2014), 9 pages. Google Scholar
Digital Library
- A. Pradhana, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. 36, 4 (2017). Google Scholar
Digital Library
- R. Radovitzky and M. Ortiz. 1999. Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comp. Meth. in Applied Mech. and Eng. 172, 1--4 (1999), 203--240.Google Scholar
Cross Ref
- D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Symp. Comp. Anim. 157--163. Google Scholar
Digital Library
- Y. R. Rashid. 1968. Ultimate strength analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design 7, 4 (1968), 334 -- 344.Google Scholar
Cross Ref
- K. Roscoe and J. Burland. 1968. On the generalised stress-strain behaviour of wet clay. Eng Plast (1968), 535--609.Google Scholar
- P. Roy, S. P. Deepu, A. Pathrikar, D. Roy, and J. N. Reddy. 2017. Phase field based peridynamics damage model for delamination of composite structures. Composite Structures 180 (2017), 972 -- 993.Google Scholar
Cross Ref
- E. Sifakis, K. G. Der, and R. Fedkiw. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Symp. Comp. Anim. 73--80. Google Scholar
Digital Library
- S. A. Silling. 2000. Reformulation of elasticity theory for discontinuities and long-range forces. J. of the Mech. and Phys. of Solids 48, 1 (2000), 175 -- 209.Google Scholar
Cross Ref
- S. A. Silling and E. Askari. 2005. A meshfree method based on the peridynamic model of solid mechanics. Computers /& Structures 83, 17 (2005), 1526 -- 1535. Advances in Meshfree Methods. Google Scholar
Digital Library
- J. C. Simo. 1988. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comp. Meth. in Applied Mech. and Eng. 66, 2 (1988), 199--219. Google Scholar
Digital Library
- B. Smith, F. de Goes, and T. Kim. 2018. Stable Neo-Hookean Flesh Simulation. ACM Trans. Graph. 37, 2 (2018), 12. Google Scholar
Digital Library
- A. Stomakhin, R. Howes, C. Schroeder, and J. M. Teran. 2012. Energetically consistent invertible elasticity. In Symp. Comp. Anim. 25--32. Google Scholar
Digital Library
- A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 4 (2013), 102:1--102:10. Google Scholar
Digital Library
- A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans. Graph. 33, 4 (2014), 138:1--138:11. Google Scholar
Digital Library
- N. Sukumar, N. Moës, B. Moran, and T. Belytschko. 2000. Extended finite element method for three-dimensional crack modelling. Int. J. for Num. Meth. in Eng. 48, 11 (2000), 1549--1570.Google Scholar
Cross Ref
- N. Sukumar, B. Moran, T. Black, and T. Belytschko. 1997. An element-free Galerkin method for three-dimensional fracture mechanics. Comp. Mech. 20, 1 (1997), 170--175. Google Scholar
Digital Library
- D. Sulsky, Z. Chen, and H. L. Schreyer. 1994. A particle method for history-dependent materials. Comp. Meth. in Applied Mech. and Eng. 118, 1--2 (1994), 179--196.Google Scholar
Cross Ref
- D. Sulsky, S. Zhou, and H. Schreyer. 1995. Application of a particle-in-cell method to solid mechanics. Comp Phys Comm 87, 1 (1995), 236--252.Google Scholar
Cross Ref
- D. Terzopoulos and K. Fleischer. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In ACM Siggraph Computer Graphics, Vol. 22. 269--278. Google Scholar
Digital Library
- H. Wang and Y. Yang. 2016. Descent Methods for Elastic Body Simulation on the GPU. ACM Trans. Graph. 35, 6, Article 212 (2016), 10 pages. Google Scholar
Digital Library
- Y. Wang, C. Jiang, C. Schroeder, and J. Teran. 2014. An adaptive virtual node algorithm with robust mesh cutting. In Symp. Comp. Anim. 77--85. Google Scholar
Digital Library
- M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, and J. F. O'Brien. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics 29, 4 (2010), 49:1--49:11. Google Scholar
Digital Library
- J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. Jiang. 2019. CD-MPM: Continuum damage material point methods for dynamic fracture animation: Supplemental document. ACM Trans. Graph. (2019). Google Scholar
Digital Library
- J. Wretborn, R. Armiento, and K. Museth. 2017. Animation of crack propagation by means of an extended multi-body solver for the material point method. Computers & Graphics 69 (2017), 131 -- 139. Google Scholar
Digital Library
- J. Y. Wu. 2017. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. of the Mech. and Phys. of Solids 103 (2017), 72 -- 99.Google Scholar
Cross Ref
- J. Y. Wu. 2018. A geometrically regularized gradient-damage model with energetic equivalence. Comp. Meth. in Applied Mech. and Eng. 328 (2018), 612 -- 637.Google Scholar
Cross Ref
- T. Yang, J. Chang, M. C. Lin, R. R. Martin, J. J. Zhang, and S. Hu. 2017. A Unified particle system framework for multi-phase, multi-material visual simulations. ACM Trans. Graph. 36, 6, Article 224 (2017), 13 pages. Google Scholar
Digital Library
- T. Yang, J. Chang, B. Ren, M. C. Lin, J. J. Zhang, and S. Hu. 2015. Fast multiple-fluid simulation using Helmholtz free energy. ACM Trans. Graph. 34, 6, Article 201 (2015), 11 pages. Google Scholar
Digital Library
- J. Yu, C. Wojtan, G. Turk, and C. Yap. 2012. Explicit Mesh Surfaces for Particle Based Fluids. Comput. Graph. Forum 31, 2pt4 (2012), 815--824. Google Scholar
Digital Library
- Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans. Graph. 34, 5 (2015), 160:1--160:20. Google Scholar
Digital Library
- Y. Yue, B. Smith, P. Y. Chen, M. Chantharayukhonthorn, K. Kamrin, and E. Grinspun. 2018. Hybrid Grains: Adaptive Coupling of Discrete and Continuum Simulations of Granular Media. ACM Trans. Graph. 37, 6, Article 283 (2018), 19 pages. Google Scholar
Digital Library
- Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3 (2005), 965--972. Google Scholar
Digital Library
- Y. Zhu, R. Bridson, and C. Greif. 2015. Simulating rigid body fracture with surface meshes. ACM Trans. Graph. 34, 4, Article 150 (2015), 11 pages. Google Scholar
Digital Library
Index Terms
CD-MPM: continuum damage material point methods for dynamic fracture animation
Recommendations
A damage model for ductile crack initiation and propagation
Damage-induced ductile crack initiation and propagation is modeled using a constitutive law with asymmetrical contraction of the yield surface and tip remeshing combined with a nonlocal strain technique. In practice, this means that the void fraction ...
Crack phase-field model equipped with plastic driving force and degrading fracture toughness for ductile fracture simulation
AbstractThis study presents a novel phase-field model for ductile fracture by the introduction of both the plastic driving force and the degrading fracture toughness into crack phase-field computations based on the phenomenological justification for ...
Numerical analysis of damage for prediction of fracture initiation in deep drawing
The sheet metal may have inherent voids/imperfections present because of preprocessing. These voids/imperfections grow under the applied load resulting into final fracture. The occurrence of ductile fracture is often a limiting factor in metal forming ...





Comments