skip to main content
research-article
Public Access

Decomposed optimization time integrator for large-step elastodynamics

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

Simulation methods are rapidly advancing the accuracy, consistency and controllability of elastodynamic modeling and animation. Critical to these advances, we require efficient time step solvers that reliably solve all implicit time integration problems for elastica. While available time step solvers succeed admirably in some regimes, they become impractically slow, inaccurate, unstable, or even divergent in others --- as we show here. Towards addressing these needs we present the Decomposed Optimization Time Integrator (DOT), a new domain-decomposed optimization method for solving the per time step, nonlinear problems of implicit numerical time integration. DOT is especially suitable for large time step simulations of deformable bodies with nonlinear materials and high-speed dynamics. It is efficient, automated, and robust at large, fixed-size time steps, thus ensuring stable, continued progress of high-quality simulation output. Across a broad range of extreme and mild deformation dynamics, using frame-rate size time steps with widely varying object shapes and mesh resolutions, we show that DOT always converges to user-set tolerances, generally well-exceeding and always close to the best wall-clock times across all previous nonlinear time step solvers, irrespective of the deformation applied.

Skip Supplemental Material Section

Supplemental Material

papers_172.mp4

References

  1. A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra. 2017. Fast Cholesky factorization on GPUs for batch and native modes in MAGMA. J of Comp Sci 20 (2017).Google ScholarGoogle Scholar
  2. U. M Ascher. 2008. Numerical methods for evolutionary differential equations. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans Graph 33, 4 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning 3, 1 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Brown and P. Brune. 2013. Low-rank quasi-Newton updates for robust Jacobian lagging in Newton-type methods. In Int Conf Math Comp Meth App Nucl Sci Eng.Google ScholarGoogle Scholar
  6. J. C. Butcher. 2016. Numerical methods for ordinary differential equations.Google ScholarGoogle Scholar
  7. I. Chao, U. Pinkall, P. Sanan, and P. Schröder. 2010. A simple geometric model for elastic deformations. ACM Trans Graph (SIGGRAPH) 29, 4 (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. 2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans on Mathematical Software (TOMS) 35, 3 (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. P. Deufihard. 2011. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. V. Dolean, P. Jolivet, and F. Nataf. 2015. An introduction to domain decomposition methods: algorithms, theory and parallel implementation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. M Teran. 2015. Optimization integrator for large time steps. IEEE Trans Vis Comp Graph 21, 10 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. E. Hairer, C. Lubich, and G. Wanner. 2006. Geometric Numerical Integration.Google ScholarGoogle Scholar
  13. E. Hairer, S. P Nørsett, and G. Wanner. 2008. Solving Ordinary Differential Equations I. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E. Hairer and G. Wanner. 1996. Solving Ordinary Differential Equations II.Google ScholarGoogle Scholar
  15. F. Hecht, Y.J. Lee, J. R. Shewchuk, and J. F. O'Brien. 2012. Updated Sparse Cholesky Factors for Corotational Elastodynamics. ACM Trans Graph 31, 5 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Huang, X. Liu, H. Bao, B. Guo, and H. Shum. 2006. An efficient large deformation method using domain decomposition. Comp & Graph 30, 6 (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Kane, J. E Marsden, M. Ortiz, and M. West. 2000. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int J for Numer Meth in Eng 49, 10 (2000).Google ScholarGoogle ScholarCross RefCross Ref
  18. G. Karypis and V. Kumar. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J on Sci Comp 20 (1998). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. Kharevych, W. Yang, Y. Tong, E. Kanso, J. E Marsden, P. Schröder, and M. Desbrun. 2006. Geometric, variational integrators for computer animation. In Symp Comp Anim. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. T. Kim and D. L James. 2012. Physics-based character skinning using multidomain subspace deformations. IEEE Trans on visualization and Comp Graph 18, 8 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. H. Liu, N. Mitchell, M. Aanjaneya, and E. Sifakis. 2016. A scalable schur-complement fluids solver for heterogeneous compute platforms. ACM Trans Graph 35, 6 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. T. Liu, A. W. Bargteil, J. F. O'Brien, and L. Kavan. 2013. Fast Simulation of Mass-Spring Systems. ACM Trans Graph 32, 6 (2013). Proc of ACM SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T. Liu, S. Bouaziz, and L. Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials. ACM Trans Graph 36, 4 (2017).Google ScholarGoogle Scholar
  24. M. Macklin, M. Müller, and N. Chentanez. 2016. XPBD: position-based simulation of compliant constrained dynamics. In Proc of the 9th Int Conf on Motion in Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Martin, B. Thomaszewski, E. Grinspun, and M. Gross. 2011. Example-based elastic materials. ACM Trans Graph (SIGGRAPH) 30, 4 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. McAdams, A. Selle, R. Tamstorf, J. Teran, and E. Sifakis. 2011. Computing the singular value decomposition of 3X 3 matrices with minimal branching and elementary floating point operations. University of Wisconsin Madison (2011).Google ScholarGoogle Scholar
  27. M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. 2007. Position based dynamics. J. Vis. Commun. Imag Represent. 18, 2 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Narain, M. Overby, and G. E Brown. 2016. ADMM ⊇ projective dynamics: fast simulation of general constitutive models.. In Symp on Comp Anim. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. JW Neuberger. 1985. Steepest descent and differential equations. J of the Mathematical Society of Japan 37, 2 (1985).Google ScholarGoogle Scholar
  30. J. Nocedal and S. Wright. 2006. Numerical Optimization.Google ScholarGoogle Scholar
  31. M. Ortiz and L. Stainier. 1999. The variational formulation of viscoplastic constitutive updates. Comp Meth in App Mech and Eng 171, 3--4 (1999).Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Overby, G. E Brown, J. Li, and R. Narain. 2017. ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE Trans Vis Comp Graph 23, 10 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. N. Parikh and S. Boyd. 2012. Block splitting for distributed optimization.Google ScholarGoogle Scholar
  34. A. Quarteroni, A. Valli, and P.M.A. Valli. 1999. Domain Decomposition Methods for Partial Differential Equations.Google ScholarGoogle Scholar
  35. T. Schneider, Y. Hu, J. Dumas, X. Gao, D. Panozzo, and D. Zorin. 2018. Decoupling simulation accuracy from mesh quality. ACM Trans Graph (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. S. Sellán, H. Y. Cheng, Y. Ma, M. Dembowski, and A. Jacobson. 2018. Solid Geometry Processing on Deconstructed Domains. CoRR (2018).Google ScholarGoogle Scholar
  37. VE Shamanskii. 1967. A modification of Newton's method. Ukrainian Mathematical J 19, 1 (1967).Google ScholarGoogle Scholar
  38. A. Shtengel, R. Poranne, O. Sorkine-Hornung, S. Z. Kovalsky, and Y. Lipman. 2017. Geometric Optimization via Composite Majorization. ACM Trans Graph 36, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. B. Smith, F. De Goes, and T. Kim. 2018. Stable Neo-Hookean Flesh Simulation. ACM Trans Graph 37, 2 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. Stomakhin, R. Howes, C. Schroeder, and J. M Teran. 2012. Energetically consistent invertible elasticity. In Symp Comp Anim. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. 2005. Robust Quasistatic Finite Elements and Flesh Simulation. In Symp Comp Anim. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. C. Xiao-Chuan and D. Maksymilian. 1994. Domain Decomposition Methods for Monotone Nonlinear Elliptic Problems. In Contemporary Math.Google ScholarGoogle Scholar
  43. Y. Zhu, R. Bridson, and D. M. Kaufman. 2018. Blended Cured Quasi-Newton for Distortion Optimization. ACM Trans. on Graph (SIGGRAPH) (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Decomposed optimization time integrator for large-step elastodynamics

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader